

50SQ030 - 50SQ100 SCHOTTKY BARRIER RECTIFIER DIODES

VOLTAGE RANGE: 30 - 100V CURRENT: 5.0 A

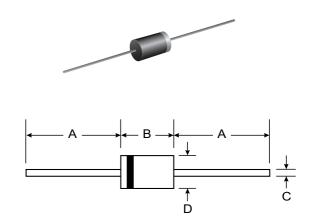
Features

- Schottky Barrier Chip
- Guard Ring Die Construction for Transient Protection
- High Current Capability
- Low Power Loss, High Efficiency
- High Surge Current Capability
- For Use in Low Voltage, High Frequency Inverters, Free Wheeling, and Polarity Protection Applications

Case: DO-201AD, Molded Plastic

Terminals: Plated Leads Solderable per

MIL-STD-202, Method 208


Polarity: Cathode Band

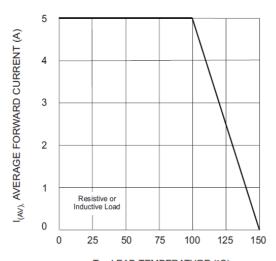
Weight: 1.2 grams (approx.)

Mounting Position: Any

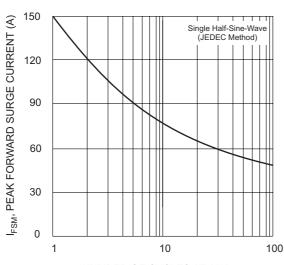
Marking: Type Number

DO-201AD						
Dim	Min	Max				
Α	25.40					
В	7.20	9.50				
С	1.20	1.30				
D	4.80	5.30				
All Dimensions in mm						

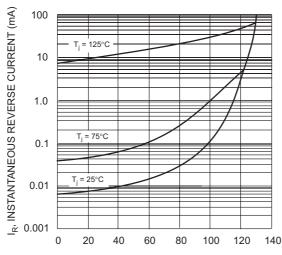
Maximum Ratings and Electrical Characteristics T_A = 25°C unless otherwise specified

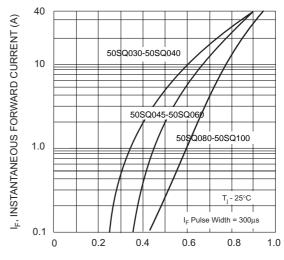

Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	50SQ030	50SQ040	50SQ045	50SQ060	50SQ080	50SQ100	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	Vrrm Vrwm Vr	30	40	45	60	80	100	V
RMS Reverse Voltage	VR(RMS)	21	28	31	42	56	70	V
Average Rectified Output Current @T _L = 100°C (Note 1)	lo	5.0						Α
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave superimposed on rated load (JEDEC Method)	I FSM	150					Α	
Forward Voltage $@I_F = 5.0A$	VFM	0.55 0.70 0.85				0.85	V	
Peak Reverse Current $@T_A = 25^{\circ}C$ At Rated DC Blocking Voltage $@T_A = 100^{\circ}C$	lгм	0.5 50						mA
Typical Junction Capacitance (Note 2)	Cj	500 400			pF			
Typical Thermal Resistance (Note 1)	R⊕JA	10					°C/W	
Operating and Storage Temperature Range	Тj, Tsтg	-65 to +150			°C			


Note: 1. Valid provided that leads are kept at ambient temperature at a distance of 9.5mm from the case.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0V D.C.




 T_L , LEAD TEMPERATURE (°C) Fig. 1 Forward Current Derating Curve

NUMBER OF CYCLES AT 60Hz Fig. 3 Max Non-Repetitive Peak Fwd Surge Current

PERCENT OF RATED PEAK REVERSE VOLTAGE (%) Fig. 5 Typical Reverse Characteristics

 ${
m V_{F}},$ INSTANTANEOUS FORWARD VOLTAGE (V) Fig. 2 Typical Forward Characteristics

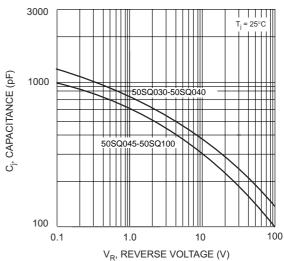


Fig. 4 Typical Junction Capacitance