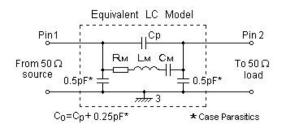

Features

- 1-port Resonator
- Provides reliable, fundamental mode, quartz frequency stabilization i.e. in transmitters or local oscillators
- In a low-profile metal **D-11** case
- Lead-free production and RoHS compliance

Package Dimensions

Pin No.	Function	
1	Input	
2	Ground	
3	Output	


Dimensions	Data (unit: mm)
А	8.36
В	3.45
С	3.0
D	0.45
E	3.0
F	2.54

Marking

R330

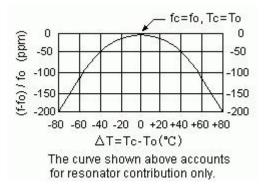
Ink OR Laser Marking *ink Color: Black or Blue Top View: "ND": Manufacturer's mark "R": SAW resonator "330": center Frequency

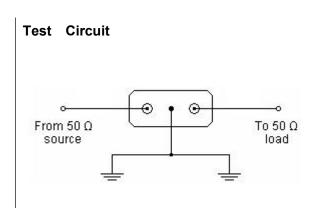
Equivalent LC Model

Maximum Ratings

Rating		Value	Unit
CW RF power dissipation	Р	0	dBm
DC voltage between any terminals	V _{DC}	±30	V
Operating temperature range	TA	-40 ~ +85	°C
Storage temperature range	$T_{ m stg}$	-40 ~ +85	°C

Electrical Characteristics

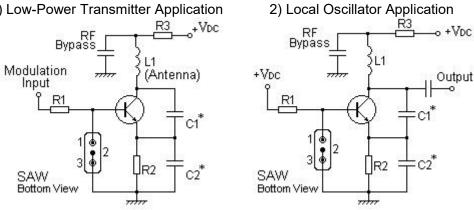

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25℃)	Absolute Frequency	fc	329.925		330.075	MHz
	Tolerance from 330.000 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.2	1.8	dB
Quality Factor	Unloaded Q	Qu		13562		
	50 Ω Loaded Q	QL		1750		
Temperature Stability	Turnover Temperature	T ₀	25		55	°C
	Turnover Frequency	f ₀		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	RM		14.82	23	Ω
	Motional Inductance	LM		96.954		μН
	Motional Capacitance	См		2.402		fF
	Pin 1 to Pin 3 Static Capacitance	C ₀	2.60	3.0	3.40	pF


🕲 RoHS Compliant

① Electrostatic Sensitive Device

- 1. Unless noted otherwise, case temperature $T_c = +25^{\circ}C \pm 2^{\circ}C$.
- 2. The center frequency, f_c , is measured at the minimum insertion loss point with the resonator in the 50 Ω test system.
- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_o, is the temperature of maximum (or turnover) frequency, f_o. The nominal frequency at any case temperature, T_c, may be calculated from: f = f_o [1 FTC (T_o T_c)²].
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the static capacitance between the two terminals measured at low frequency (10MHz) with a capacitance meter. The measurement includes case parasitic capacitance.

Temperature Characteristics



Typical Frequency Response

Typical Application Circuits

1) Low-Power Transmitter Application

© NEDI 2010. All Rights Reserved.

- 1. The specifications of this device are subject to change or obsolescence without notice.
- 2. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes 3. and circuits implemented within components or assemblies.
- 4. For questions on technology, prices and delivery, please contact our sales offices or e-mail winnsky@winnsky.com