
Features

- 1-port Resonator
- Provides reliable, fundamental mode, quartz frequency stabilization i.e. in transmitters or local oscillators
- In a low-profile metal **D-11** case
- Lead-free production and RoHS compliance

Package Dimensions

Pin No.	Function Input Ground		
1			
2			
3	Output		

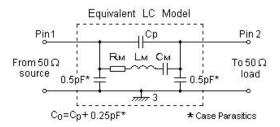
Dimensions	Data (unit: mm)			
А	8.36			
В	3.45			
С	3.0			
D	0.45			
Е	3.0			
F	2.54			

Marking

R315

Ink OR Laser Marking

*ink Color: Black or Blue


Top View:

"ND": Manufacturer's mark

"R": SAW resonator

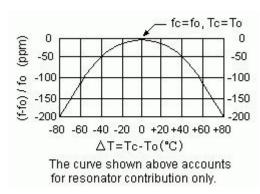
"315": center Frequency

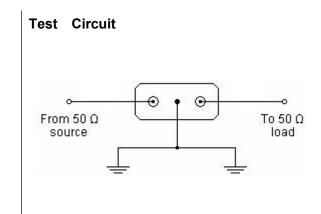
Equivalent LC Model

Maximum Ratings

Rating	Value	Unit	
CW RF power dissipation	Р	0	dBm
DC voltage between any terminals	$V_{ extsf{DC}}$	±30	V
Operating temperature range	T _A	-40 ~ +85	°C
Storage temperature range	T _{stg}	-40 ~ +85	°C

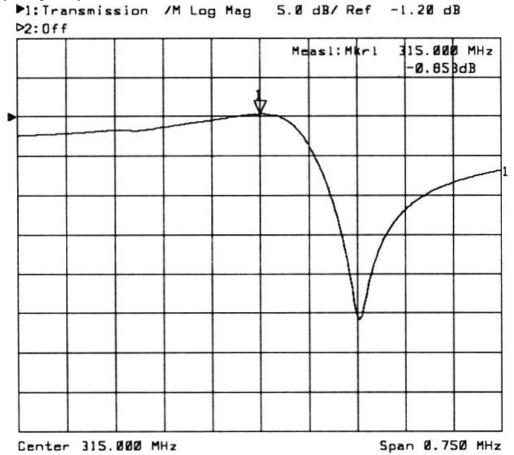
Electrical Characteristics

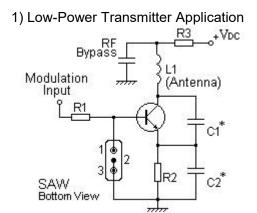

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25°C)	Absolute Frequency	fc	314.925		315.075	MHz
	Tolerance from 315.000 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.0	1.6	dB
Quality Factor	Unloaded Q	Qυ		14,000		
	50 Ω Loaded Q	QL		1,500		
Temperature Stability	Turnover Temperature	T ₀	25		55	°C
	Turnover Frequency	f ₀		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			ΜΩ
RF Equivalent RLC Model	Motional Resistance	R _M		12	20	Ω
	Motional Inductance	L _M		84.9257		μН
	Motional Capacitance	См		3.0090		fF
	Pin 1 to Pin 3 Static Capacitance	C ₀	2.70	3.00	3.30	pF

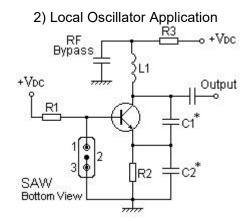

® RoHS Compliant

Electrostatic Sensitive Device

- 1. Unless noted otherwise, case temperature T_C = +25°C±2°C.
- 2. The center frequency, f_C , is measured at the minimum insertion loss point with the resonator in the 50Ω test system.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_0 , may be calculated from: $f = f_0 [1 FTC (T_0 T_0)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the static capacitance between the two terminals measured at low frequency (10MHz) with a capacitance meter. The measurement includes case parasitic capacitance.


Temperature Characteristics





Typical Application Circuits

© NEDI 2009. All Rights Reserved.

- The specifications of this device are subject to change or obsolescence without notice.
- 2. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 3. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 4. For questions on technology, prices and delivery, please contact our sales offices or e-mail winnsky@winnsky.com