Preferred Devices

SWITCHMODE [™] **Power Rectifiers**

MUR105, MUR110, MUR115, MUR120, MUR130, MUR140, MUR160

The MUR120 series of SWITCHMODE power rectifiers are designed for use in switching power supplies, inverters and as free wheeling diodes.

Features

- Ultrafast 25, 50 and 75 Nanosecond Recovery Times
- 175°C Operating Junction Temperature
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Reverse Voltage to 600 V
- Shipped in Plastic Bags; 1,000 per Bag
- Available Tape and Reel; 5,000 per Reel, by adding a "RL" Suffix to the Part Number
- These are Pb-Free Devices*

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 0.4 Gram (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Polarity: Cathode Indicated by Polarity Band

ON Semiconductor®

http://onsemi.com

ULTRAFAST RECTIFIERS 1.0 AMPERE, 50 – 600 VOLTS

MARKING DIAGRAM

A = Assembly Location MUR1xx= Specific Device Code

Y = Year WW = Work Week ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

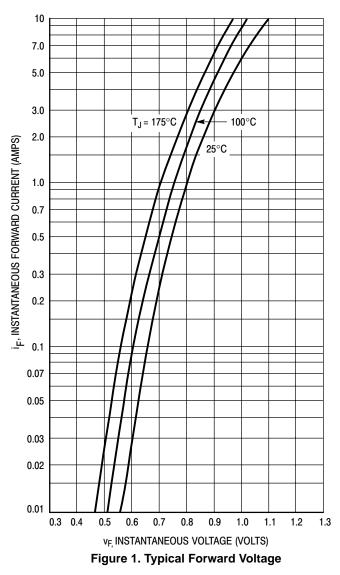
See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MAXIMUM RATINGS

		MUR							
Rating	Symbol	105	110	115	120	130	140	160	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	300	400	600	V
Average Rectified Forward Current (Square Wave Mounting Method #3 Per Note 2)	I _{F(AV)}	1.0 @ T _A = 130°C		А					
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	I _{FSM}	35		А					
Operating Junction Temperature and Storage Temperature	T _J , T _{stg}	- 65 to +175		°C					


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

THERWIAL CHARACTERISTICS							
Characterisic	Symbol	Max		Unit			
Maximum Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$	Note 2		°C/W			
ELECTRICAL CHARACTERISTICS							
Maximum Instantaneous Forward Voltage (Note 1) (i _F = 1.0 Amp, T_J = 150°C) (i _F = 1.0 Amp, T_J = 25°C)	VF	0.710 0.875	1.05 1.25	V			
Maximum Instantaneous Reverse Current (Note 1) (Rated DC Voltage, $T_J = 150^{\circ}C$) (Rated DC Voltage, $T_J = 25^{\circ}C$)	i _R	50 2.0	150 5.0	μΑ			
Maximum Reverse Recovery Time ($I_F = 1.0 \text{ A}, \text{ di/dt} = 50 \text{ A/}\mu\text{s}$) ($I_F = 0.5 \text{ A}, i_R = 1.0 \text{ A}, I_{REC} = 0.25 \text{ A}$)	t _{rr}	35 25	75 50	ns			
Maximum Forward Recovery Time (I _F = 1.0 A, di/dt = 100 A/μs, I _{REC} to 1.0 V)	t _{fr}	25	50	ns			

^{1.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MUR105, MUR110, MUR115, MUR120

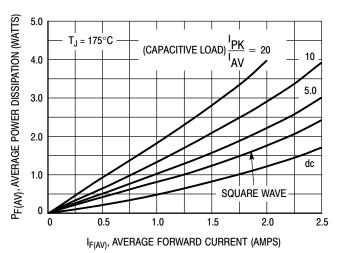


Figure 4. Power Dissipation

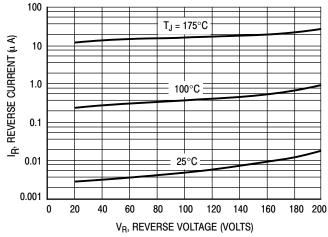


Figure 2. Typical Reverse Current*

* The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if V_R is sufficiently below rated V_R .

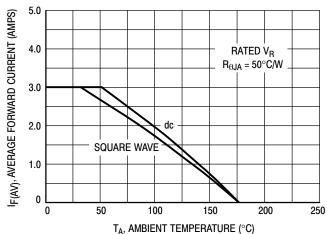


Figure 3. Current Derating (Mounting Method #3 Per Note 1)

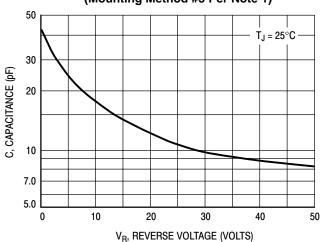


Figure 5. Typical Capacitance

MUR130, MUR140, MUR160

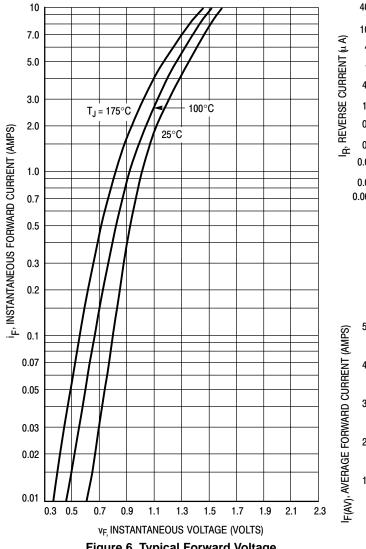


Figure 6. Typical Forward Voltage

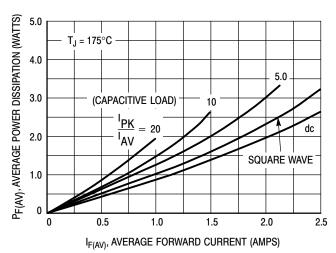


Figure 9. Power Dissipation

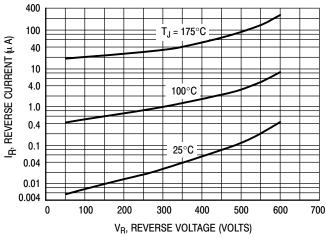
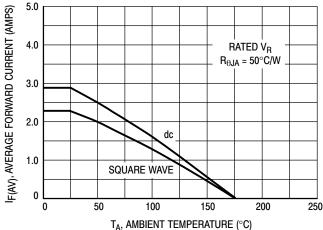



Figure 7. Typical Reverse Current*

* The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if $V_{\mbox{\scriptsize R}}$ is sufficiently below rated V_R.

Figure 8. Current Derating (Mounting Method #3 Per Note 2)

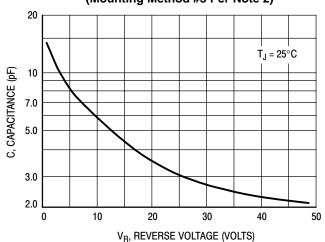


Figure 10. Typical Capacitance

ORDERING INFORMATION

Device	Marking Package		Shipping [†]		
MUR105	MUR105	Axial Lead*	1000 Units / Bag		
MUR105G	MUR105	Axial Lead*	1000 Units / Bag		
MUR105RL	MUR105	Axial Lead*	5000 Units / Tape & Reel		
MUR105RLG	MUR105	Axial Lead*	5000 Units / Tape & Reel		
MUR110	MUR110	Axial Lead*	1000 Units / Bag		
MUR110G	MUR110	Axial Lead*	1000 Units / Bag		
MUR110RL	MUR110	Axial Lead*	5000 Units / Tape & Reel		
MUR110RLG	MUR110	Axial Lead*	5000 Units / Tape & Reel		
MUR115	MUR115	Axial Lead*	1000 Units / Bag		
MUR115G	MUR115	Axial Lead*	1000 Units / Bag		
MUR115RL	MUR115	Axial Lead*	5000 Units / Tape & Reel		
MUR115RLG	MUR115	Axial Lead*	5000 Units / Tape & Reel		
MUR120	MUR120	Axial Lead*	1000 Units / Bag		
MUR120G	MUR120	Axial Lead*	1000 Units / Bag		
MUR120RL	MUR120	Axial Lead*	5000 Units / Tape & Reel		
MUR120RLG	MUR120	Axial Lead*	5000 Units / Tape & Reel		
MUR130	MUR130	Axial Lead*	1000 Units / Bag		
MUR130G	MUR130	Axial Lead*	1000 Units / Bag		
MUR130RL	MUR130	Axial Lead*	5000 Units / Tape & Reel		
MUR130RLG	MUR130	Axial Lead*	5000 Units / Tape & Reel		
MUR140	MUR140	Axial Lead*	1000 Units / Bag		
MUR140G	MUR140	Axial Lead*	1000 Units / Bag		
MUR140RL	MUR140	Axial Lead*	5000 Units / Tape & Reel		
MUR140RLG	MUR140	Axial Lead*	5000 Units / Tape & Reel		
MUR160	MUR160	Axial Lead*	1000 Units / Bag		
MUR160G	MUR160	Axial Lead*	1000 Units / Bag		
MUR160RL	MUR160	Axial Lead*	5000 Units / Tape & Reel		
MUR160RLG	MUR160	Axial Lead*	5000 Units / Tape & Reel		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}This package is inherently Pb-Free.