

S70FL01GS

1 Gbit (128 Mbyte), 3.0V, SPI Flash

Features

- CMOS 3.0V Core
- Serial Peripheral Interface (SPI) with Multi-I/O
 - SPI Clock polarity and phase modes 0 and 3
 - Double Data Rate (DDR) option
 - Extended Addressing: 32-bit address
 - Serial Command set and footprint compatible with S25FL-A, S25FL-K, and S25FL-P SPI families
 - Multi I/O Command set and footprint compatible with S25FL-P SPI family
- READ Commands
 - Normal, Fast, Dual, Quad, Fast DDR, Dual DDR, Quad DDR
 - AutoBoot power up or reset and execute a Normal or Quad read command automatically at a preselected address
 - Common Flash Interface (CFI) data for configuration information
- Programming (1.5 Mbytes/s)
 - 512-byte Page Programming buffer
 - Quad-Input Page Programming (QPP) for slow clock systems
- Erase (0.5 Mbytes/s)
 - Uniform 256-kbyte sectors
- Cycling Endurance
 - 100,000 Program-Erase Cycles on any sector typical
- Data Retention
 - 20 Year Data Retention typical

General Description

This document contains information for the S70FL01GS device, which is a dual die stack of two S25FL512S die. For detailed specifications, refer to the discrete die datasheet provided in Table 1.

Table 1. Affected Documents/Related Documents

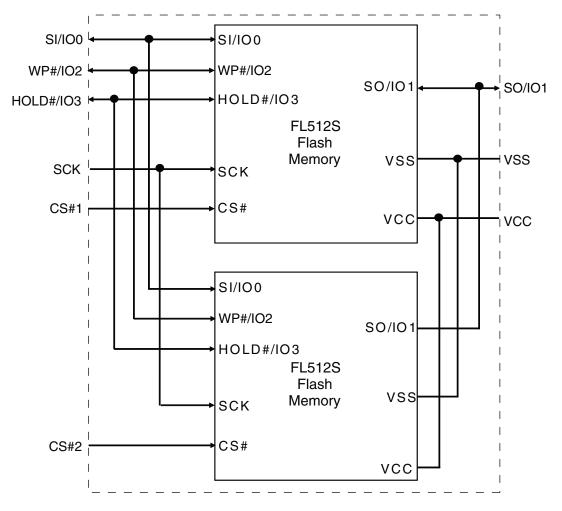
Document Title	Publication Number		
S25FL512S 512 Mbit (64 Mbyte) 3.0V SPI Flash Memory Datasheet	001-98284		

198 Champion Court

• San Jose, CA 95134-1709 • 408-943-2600 Revised February 03, 2016

Security Features

- One Time Program (OTP) array of 1024 bytes
- Block Protection
 - Status Register bits to control protection against program or erase of a contiguous range of sectors.
 - Hardware and software control options
 - Advanced Sector Protection (ASP)
 - Individual sector protection controlled by boot code or password
- Cypress 65 nm MirrorBit Technology with EclipseTM Architecture
- Core Supply Voltage: 2.7V to 3.6V
- I/O Supply Voltage: 1.65V to 3.6V
- Temperature Range:
 - Industrial (-40°C to +85°C)
 - Industrial Plus (-40°C to +105°C)
- Packages (all Pb-free)
 - 16-lead SOIC (300 mils)
 - BGA-24, $8 \times 6 \text{ mm}$
 - -5×5 ball (FAB024) footprint


Contents

1.	Block Diagram	3
2.	Connection Diagrams	4
3.	Input/Output Summary	5
4.	Device Operations	6
4.1	Programming	6
4.2	Simultaneous Die Operation	
4.3	Sequential Reads	
4.4	Sector/Bulk Erase	6
4.5	Status Registers	6
4.6	Configuration Register	
4.7	Bank Address Register	6
4.8	Security and DDR Registers	6
4.9	Block Protection	
5.	Read Identification (RDID)	7
6.	RESET#	7

7.	Versatile I/O Power Supply (VIO)	. 7
8.	DC Characteristics	. 8
9.	AC Test Conditions	. 9
10.1	SDR AC Characteristics DDR AC Characteristics Capacitance Characteristics	11
	Ordering Information	
	SOIC 16 Physical Diagram SL3016 — 16-pin Wide Plastic Small Outline Package (300-mil Body Width)	
	FAB024 Physical Diagram FAB024 — 24-Ball BGA (8 x 6 mm) Package	
14.	Revision History	15

1. Block Diagram

2. Connection Diagrams

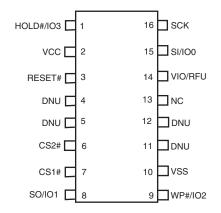


Figure 2.2 24-Ball BGA, 5 x 5 Ball Footprint (FAB024), Top View

	1	2	3	4	5
A		DNU	CS2#	RESET#	RFU
В	DNU	SCK	VSS	VCC	RFU
С	DNU	CS#	RFU	WP#/IO2	RFU
D	DNU	SO/IO1	SI/IO0	HOLD#/IO3	DNU
E	DNU	DNU	DNU	VIO/RFU	DNU

Note:

1. V_{IO} is not supported in the S70FL01GS device and is RFU. Refer to Section 7. for more details.

3. Input/Output Summary

Table 3.1 Signal List

Signal Name	Туре	Description
RESET#	Input	Hardware Reset: Low = device resets and returns to standby state, ready to receive a command. The signal has an internal pull-up resistor and may be left unconnected in the host system if not used.
SCK	Input	Serial Clock.
CS#	Input	Chip Select.
SI / IO0	I/O	Serial Input for single bit data commands or IO0 for Dual or Quad commands.
SO / IO1	I/O	Serial Output for single bit data commands. IO1 for Dual or Quad commands.
WP# / 102	I/O	Write Protect when not in Quad mode. IO2 in Quad mode. The signal has an internal pull-up resistor and may be left unconnected in the host system if not used for Quad commands.
HOLD# / IO3	I/O	Hold (pause) serial transfer in single bit or Dual data commands. IO3 in Quad-I/O mode. The signal has an internal pull-up resistor and may be left unconnected in the host system if not used for Quad commands.
V _{CC}	Supply	Core Power Supply.
V _{IO}	Supply	Versatile I/O Power Supply. Note: V _{IO} is not supported in the S70FL01GS device. Refer to Section 7. for more details.
V _{SS}	Supply	Ground.
NC	Unused	Not Connected. No device internal signal is connected to the package connector nor is there any future plan to use the connector for a signal. The connection may safely be used for routing space for a signal on a Printed Circuit Board (PCB). However, any signal connected to an NC must not have voltage levels higher than V_{CC} .
RFU	Reserved	Reserved for Future Use. No device internal signal is currently connected to the package connector but there is potential future use of the connector for a signal. It is recommended to not use RFU connectors for PCB routing channels so that the PCB may take advantage of future enhanced features in compatible footprint devices.
DNU	Reserved	Do Not Use. A device internal signal may be connected to the package connector. The connection may be used by Cypress for test or other purposes and is not intended for connection to any host system signal. Any DNU signal related function will be inactive when the signal is at V_{IL} . The signal has an internal pull-down resistor and may be left unconnected in the host system or may be tied to V_{SS} . Do not use these connections for PCB signal routing channels. Do not connect any host system signal to this connection.

4. Device Operations

4.1 **Programming**

Each Flash die must be programmed independently due to the nature of the dual die stack.

4.2 Simultaneous Die Operation

The user may only access one Flash die of the dual die stack at a time via its respective Chip Select.

4.3 Sequential Reads

Sequential reads are not supported across the end of the first Flash die to the beginning of the second. If the user desires to sequentially read across the two die, data must be read out of the first die via CS1# and then read out of the second die via CS2#.

4.4 Sector/Bulk Erase

A sector erase command must be issued for sectors in each Flash die separately. Full device Bulk Erase via a single command is not supported due to the nature of the dual die stack. A Bulk Erase command must be issued for each die.

4.5 Status Registers

Each Flash die of the dual die stack is managed by its own Status Registers. Reads and updates to the Status Registers must be managed separately. It is recommended that Status Register control bit settings of each die are kept identical to maintain consistency when switching between die.

4.6 Configuration Register

Each Flash die of the dual die stack is managed by its own Configuration Register. Updates to the Configuration Register control bits must be managed separately. It is recommended that Configuration Register control bit settings of each die are kept identical to maintain consistency when switching between die.

4.7 Bank Address Register

It is recommended that the Bank Address Register bit settings of each die are kept identical to maintain consistency when switching between die.

4.8 Security and DDR Registers

It is recommended that the bit settings for ASP Register, Password Register, PPB Lock Register, PPB Access Register, DYB Access Register, and DDR Data Learning Register in each die are kept identical to maintain consistency when switching between die.

4.9 Block Protection

Each Flash die of the dual die stack will maintain its own Block Protection. Updates to the TBPROT and BPNV bits of each die must be managed separately. By default, each die is configured to be protected starting at the top (highest address) of each array, but no address range is protected. It is recommended that the Block Protection settings of each die are kept identical to maintain consistency when switching between die. In addition, any update to the FREEZE bit must be managed separately for each die. If the FREEZE bit is set to a logic 1, it cannot be cleared to a logic 0 until a power-on-reset is executed on each die that has the FREEZE bit set to 1.

5. Read Identification (RDID)

The Read Identification (RDID) command outputs the one-byte manufacturer identification, followed by the two-byte device identification and the bytes for the Common Flash Interface (CFI) tables. Each die of the FL01GS dual die stack will have identical identification data as the FL512S die, with the exception of the CFI data at byte 27h, as shown in Table 5.1.

Table 5.1 Product Group CFI Device Geometry Definition

Byte	Data	Description
27h	1Bh	Device Size = 2 ^N byte

6. RESET#

Note that the hardware RESET# input (pin 3 on the 16-pin SO package and ball A4 on the 5x5 BGA package) is bonded out and active for the S70FL01GS device. For applications that do NOT require use of the RESET# pin, it is recommended to not use RESET# for PCB routing channels that would cause the RESET# signal to be asserted Low (V_{IL}). Doing so will cause the device to reset to standby state. The RESET# signal has an internal pull-up resistor and may be left unconnected in the host system if not used.

7. Versatile I/O Power Supply (VIO)

Note that the Versatile I/O (V_{IO}) power supply (pin 14 on the 16-pin SO package and ball E4 on the 5x5 BGA package) is not supported, and pin 14 and ball E4 are RFU (Reserved for Future Use) in the standard configuration of the S70FL01GS device. Contact your local sales office to confirm availability with the V_{IO} feature enabled.

8. DC Characteristics

This section summarizes the DC Characteristics of the device.

Table 8.1 DC Characteristics

Symbol	Parameter	Test Conditions	Min	Typ (1)	Max	Unit
V _{IL}	Input Low Voltage	_	-0.5	_	$0.2 \times V_{CC}$	V
V _{IH}	Input High Voltage	_	0.7 x V _{CC}	_	V _{CC} + 0.4	V
V _{OL}	Output Low Voltage	I_{OL} = 1.6 mA, V_{CC} = V_{CC} min	—	—	0.15 x V _{CC}	V
V _{OH}	Output High Voltage	I _{OH} = -0.1 mA	$0.85 \times V_{CC}$	—		V
I _{LI}	Input Leakage Current	$V_{CC} = V_{CC}$ Max, $V_{IN} = V_{IH}$ or V_{IL}	_	—	±4	μA
I _{LO}	Output Leakage Current	$V_{CC} = V_{CC}$ Max, $V_{IN} = V_{IH}$ or V_{IL}	_	—	±4	μA
I _{CC1}	Active Power Supply Current (READ)	Serial SDR @ 50 MHz Serial SDR @ 133 MHz Quad SDR @ 80 MHz Quad SDR @ 104 MHz Quad DDR @ 66 MHz Outputs unconnected during read data return (2)	_	_	18 36 50 61 75	mA
I _{CC2}	Active Power Supply Current (Page Program)	CS# = V _{CC}	_	_	100	mA
I _{CC3}	Active Power Supply Current (WRR)	CS# = V _{CC}	_	_	100	mA
I _{CC4}	Active Power Supply Current (SE)	CS# = V _{CC}	_	_	100	mA
I _{CC5}	Active Power Supply Current (BE) (3)	CS# = V _{CC}	-	_	100	mA
I _{SB} (Industrial)	Standby Current	RESET#, CS# = V_{CC} ; SI, SCK = V_{CC} or V_{SS} , Industrial Temp	-	70	200	μA
I _{SB} (Industrial Plus)	Standby Current	RESET#, CS# = V_{CC} ; SI, SCK = V_{CC} or V_{SS} , Industrial Plus Temp	_	70	300	μA

Notes:

1. Typical values are at $T_{AI} = 25^{\circ}C$ and $V_{CC} = 3V$.

2. Output switching current is not included.

3. Bulk Erase is on a per-die basis, not for the whole device.

9. AC Test Conditions

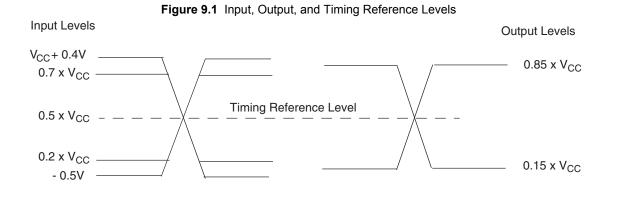


Figure 9.2 Test Setup

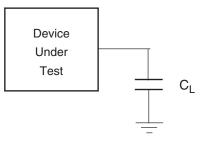


Table 9.1 AC Measurement Conditions

Symbol	Parameter	Min	Max	Unit		
CL	Load Capacitance	30 15 (4)				pF
	Input Rise and Fall Times		2.4	ns		
Input Pulse Voltage		0.2 x V _{CC} t	0.2 x V _{CC} to 0.8 V _{CC}			
	Input Timing Ref Voltage		0.5 V _{CC}			
	Output Timing Ref Voltage	0.5 V _{CC}		V		

Notes:

1. Output High-Z is defined as the point where data is no longer driven.

2. Input slew rate: 1.5 V/ns.

3. AC characteristics tables assume clock and data signals have the same slew rate (slope).

4. DDR Operation.

10. SDR AC Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
F _{SCK, R}	SCK Clock Frequency for READ and 4READ instructions	DC	-	50	MHz
F _{SCK, C}	SCK Clock Frequency for single commands (4)	DC	_	133	MHz
F _{SCK, C}	SCK Clock Frequency for the following dual and quad commands: DOR, 4DOR, QOR, 4QOR, DIOR, 4DIOR, QIOR, 4QIOR	DC	_	104	MHz
F _{SCK, QPP}	SCK Clock Frequency for the QPP, 4QPP commands	DC	_	80	MHz
P _{SCK}	SCK Clock Period	1/ F _{SCK}	_	8	
t _{WH} , t _{CH}	Clock High Time (5)	45% P _{SCK}	_	_	ns
t _{WL} , t _{CL}	Clock Low Time (5)	45% P _{SCK}	_	_	ns
t _{CRT} , t _{CLCH}	Clock Rise Time (slew rate)	0.1	_	_	V/ns
t _{CFT} , t _{CHCL}	Clock Fall Time (slew rate)	0.1	_	_	V/ns
$t_{CS}(7)$	CS# High Time (Read Instructions) CS# High Time (Program/Erase)	10 50	_	-	ns
t _{CSS}	CS# Active Setup Time (relative to SCK)	3	_	-	ns
t _{CSH}	CS# Active Hold Time (relative to SCK)	3	_	3000 (6)	ns
t _{SU}	Data in Setup Time	3	_	-	ns
t _{HD}	Data in Hold Time	2	_	_	ns
t _V	Clock Low to Output Valid	-	_	8.0 (2) 7.65 (3) 6.5 (4)	ns
t _{HO}	Output Hold Time	2	_	_	ns
t _{DIS}	Output Disable Time	0	_	8	ns
t _{WPS}	WP# Setup Time	20 (1)	_	_	ns
t _{WPH}	WP# Hold Time	100 (1)	_	_	ns
t _{HLCH}	HOLD# Active Setup Time (relative to SCK)	3	_	_	ns
t _{CHHH}	HOLD# Active Hold Time (relative to SCK)	3	_	_	ns
t _{HHCH}	HOLD# Non-Active Setup Time (relative to SCK)	3	_	_	ns
t _{CHHL}	HOLD# Non-Active Hold Time (relative to SCK)	3	_	_	ns
t _{HZ}	HOLD# Enable to Output Invalid	-	_	8	ns
t _{LZ}	HOLD# Disable to Output Valid	-	_	8	ns

Notes:

1. Only applicable as a constraint for WRR instruction when SRWD is set to a 1.

2. Full V_{CC} range (2.7 - 3.6V) and CL = 30 pF.

3. Regulated V_{CC} range (3.0 - 3.6V) and CL = 30 pF.

4. Regulated V_{CC} range (3.0 - 3.6V) and CL = 15 pF.

5. $\pm 10\%$ duty cycle is supported for frequencies \leq 50 MHz.

6. Maximum value only applies during Program/Erase Suspend/Resume commands.

 When switching between die, a minimum time of t_{CS} must be kept between the rising edge of one chip select and the falling edge of the other for operations and data to be valid.

10.1 DDR AC Characteristics

Table 10.2 DDR AC Characteristics 66 MHz Operation

Symbol	Parameter	Min	Тур	Мах	Unit
F _{SCK, R}	SCK Clock Frequency for DDR READ instruction	DC	_	66	MHz
P _{SCK, R}	SCK Clock Period for DDR READ instruction	15	-	8	ns
t _{WH} , t _{CH}	Clock High Time	45% P _{SCK}	-	_	ns
t _{WL} , t _{CL}	Clock Low Time	45% P _{SCK}	-	_	ns
t _{CS}	CS# High Time (Read Instructions)	10	-	_	ns
t _{CSS}	CS# Active Setup Time (relative to SCK)	3	-	_	ns
t _{CSH}	CS# Active Hold Time (relative to SCK)	3	-	_	ns
t _{SU}	IO in Setup Time	2	-	3000 (2)	ns
t _{HD}	IO in Hold Time	2	-		ns
t _V	Clock Low to Output Valid	0	-	6.5(1)	ns
t _{HO}	Output Hold Time	0	-	_	ns
t _{DIS}	Output Disable Time	_	-	8	ns
t _{LZ}	Clock to Output Low Impedance	0	-	8	ns
t _{IO_skew}	First IO to last IO data valid time	—	-	600	ps

Notes:

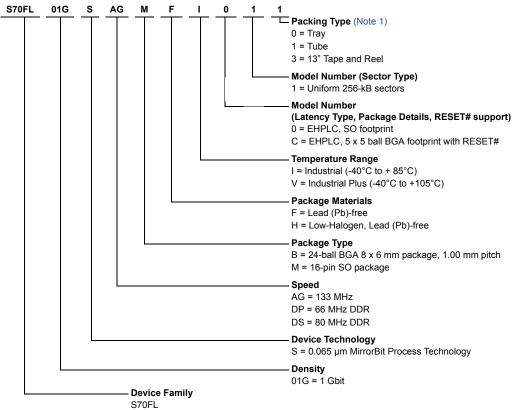
1. Regulated V_{CC} range (3.0 - 3.6V) and CL =15 pF.

2. Maximum value only applies during Program/Erase Suspend/Resume commands.

10.2 Capacitance Characteristics

Table 10.3 Capacitance

	Parameter	Test Conditions	Min	Max	Unit
C _{IN}	Input Capacitance (applies to SCK, CS#1, CS#2, RESET#)	1 MHz	_	16	pF
C _{OUT}	Output Capacitance (applies to All I/O)	1 MHz	-	16	pF


Note:

1. For more information on capacitance, please consult the IBIS models.

11 Ordering Information

The ordering part number is formed by a valid combination of the following:

Cypress Stacked Memory 3.0V-Only, Serial Peripheral Interface (SPI) Flash Memory

Notes:

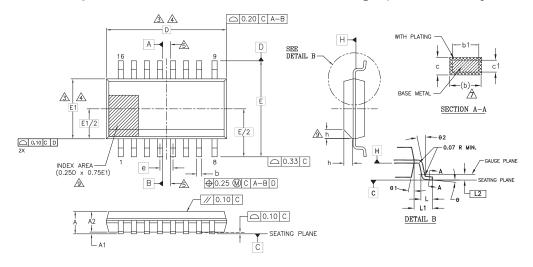
- 1. EHPLC = Enhanced High Performance Latency Code table.
- 2. Uniform 256-kB sectors = All sectors are uniform 256-kB with a 512B programming buffer.

11.1 Valid Combinations

Table 11.1 lists the valid combinations configurations planned to be supported in volume for this device.

S70FL01GS Valid Combinations					
Base Ordering Part Number	Speed Option	Package and Temperature	Model Number	Packing Type	Package Marking (1)
S70FL01GS	AG	MFI, MFV	01	0, 1, 3	FL01GS + A + (temp) + F + (Model Number)
	DP				FL01GS + D + (temp) + F + (Model Number)
	AG	BHI	C1	0, 3	FL01GS + A + (temp) + H + (Model Number)
	DP	BHV			FL01GS + D + (temp) + H + (Model Number)

 Table 11.1
 S70FL01GS Valid Combinations Table


Note:

1. Package Marking omits the leading "S70" and package type.

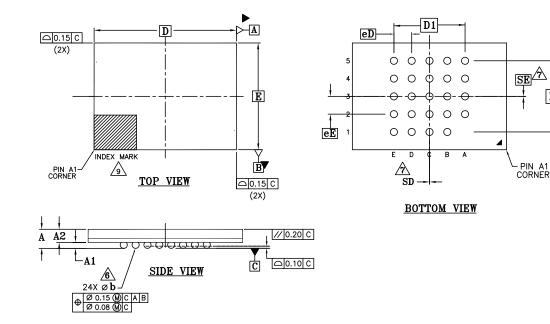
12. SOIC 16 Physical Diagram

12.1 SL3016 — 16-pin Wide Plastic Small Outline Package (300-mil Body Width)

PACKAGE	SL3016	(inches)	SL3016 (mm)		
JEDEC	MS-01	3(E)AA	MS-013(E)AA		
SYMBOL	MIN	MAX	MIN	MAX	
A	0.093	0.104	2.35	2.65	
A1	0.004	0.012	0.10	0.30	
A2	0.081	0.104	2.05	2.55	
b	0.012	0.020	0.31	0.51	
b1	0.011	0.019	0.27	0.48	
с	0.008	0.013	0.20	0.33	
c1	0.008	0.012	0.20	0.30	
D	0.406	BSC	10.30 BSC		
E	0.406	BSC	10.30 BSC		
E1	0.295	BSC	7.50 BSC		
e	.050 E	3SC	1.27 BSC		
L	0.016	0.050	0.40	1.27	
L1	.055	REF	1.40 REF		
L2	.010	BSC	0.25 BSC		
N	16		16		
h	0.10	0.30	0.25	0.75	
θ	0°	8°	0°	8°	
θ1	5°	15°	5°	15°	
θ2	0°		0°		

NOTES:

- 1. ALL DIMENSIONS ARE IN BOTH INCHES AND MILLMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.
- DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER END. DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE. D AND E1 DIMENSIONS ARE DETERMINED AT DATUM H.
- THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. DIMENSIONS D AND E1 ARE DETERMINED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH. BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- 5. DATUMS A AND B TO BE DETERMINED AT DATUM H.
- 6. "N" IS THE MAXIMUM NUMBER OF TERMINAL POSITIONS FOR THE SPECIFIED PACKAGE LENGTH.
- THE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 TO 0.25 mm FROM THE LEAD TIP.
- DIMENSION "b" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.10 mm TOTAL IN EXCESS OF THE "b" DIMENSION AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE LEAD FOOT.
- Image: This chamfer feature is optional. If it is not present, then a pin 1 identifier must be located within the index area indicated.
- 10. LEAD COPLANARITY SHALL BE WITHIN 0.10 mm AS MEASURED FROM THE SEATING PLANE.


g1012r2\16-038.3\04.1.11

E1

13. FAB024 Physical Diagram

13.1 FAB024 — 24-Ball BGA (8 x 6 mm) Package

PACKAGE	F	AB024		
JEDEC	N/A			
	8.00mmx6.00mm NOM PACKAGE			
SYMBOL	MIN.	NOM.	MAX.	NOTE
A	-	-	1.20	OVERALL THICKNESS
A1	0.20	-	-	BALL HEIGHT
A2	0.70	1	0.90	BODY THICKNESS
D	8.00 BSC.			BODY SIZE
E	6.00 BSC.			BODY SIZE
2	4.00 BSC.			BALL FOOTPRINT
E1	4.00 BSC.			BALL FOOTPRINT
MD	5			ROW MATRIX SIZE D DIRECTION
ME	5			ROW MATRIX SIZE E DIRECTION
N	24			TOTAL BALL COUNT
øb	0.35	0.40	0.45	BALL DIAMETER
	1.00 BSC.			BALL PITCH
SD/SE	0.00			SOLDER BALL PLACEMENT
	A1			DEPOPULATED SOLDER BALLS
	I			PACKAGE OUTLINE TYPE

NOTES:

- 1. DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS.
- 3. BALL POSITION DESIGNATION PER JEP95, SECTION 4.3, SPP-010.
- 4. e REPRESENTS THE SOLDER BALL GRID PITCH.
- 5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. n IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
- 6 DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
- 8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.
- A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.

4002/F16-038 Rev.A /6.04.09

14. Revision History

Document History Page

Document Title: S70FL01GS, 1 Gbit (128 Mbyte), 3.0V, SPI Flash Document Number: 001-98295				
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	_	BWHA	11/06/2012	Initial release
*A	_	BWHA	04/25/2013	Global: Datasheet designation updated from Advance Information to Preliminary DC Characteristics: DC Characteristics table: changed Max value of ILI, ILO, ICC1, and ISB
*B	_	BWHA	05/16/2013	SOIC 16 Physical Diagram: Updated package nomenclature from S03016 to SL3016
*C	_	BWHA	08/22/2013	Valid Combinations: Valid Combinations table: added MFV DC Characteristics: DC Characteristics table: added ISB (Automotive)
*D	-	BWHA	11/08/2013	Global: Datasheet designation updated from Preliminary to Full Production
*E	_	BWHA	03/19/2014	Features: Packages (all Pb-free): added BGA-24, 8 x 6 mm Connections Diagrams: Added figure: 24-Ball BGA, 5 x 5 Ball Footprint (FAB024), Top View Ordering Information: Added options to: Model Number, Package Materials, Package Type, and Speed Valid Combinations: Added option to S70FL01GS Valid Combinations Table SDR AC Characteristics: SDR AC Characteristics (Single Die Package, VCC = 2.7V to 3.6V) table: updated tv Min DDR AC Characteristics:Updated DDR AC Characteristics 66 MHz Operation table Capacitance Characteristics: Capacitance table: updated Max values and removed note
*F	-	BWHA	11/07/2014	Valid Combinations: Added DP Speed Option for BGA 5x5 package
*G	-	BWHA	04/21/2015	Valid Combinations: Added BHV option
*Н	4871631	BWHA	08/24/2015	Updated to Cypress template. Changed Automotive Temperature Range to Industrial Plus Temperature Range in Features and Section 4
*	5123878	BWHA	02/03/2016	Updated General Description.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2012-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-98295 Rev. *I

Revised February 03, 2016

Page 16 of 16

Cypress[®], Spansion[®], MirrorBit[®], Eclipse[™], ORNAND[™], HyperBus[™], HyperFlash[™] and combinations thereof, are trademarks and registered trademarks of Cypress Semiconductor Corp. All products and company names mentioned in this document may be the trademarks of their respective holders.