

Sample &

Buv



SN74LVC2G06

SCES307J-AUGUST 2001-REVISED JULY 2015

## SN74LVC2G06 Dual Inverter Buffer and Driver With Open-Drain Outputs

Technical

Documents

### **1** Features

- Available in the Texas Instruments Package
- Supports 5-V V<sub>CC</sub> Operation
- Max t<sub>pd</sub> of 3.4 ns at 3.3 V
- Low Power Consumption, 10-µA Max I<sub>CC</sub>
- ±24-mA Output Drive at 3.3 V
- Typical V<sub>OLP</sub> (Output Ground Bounce)
   <0.8 V at V<sub>CC</sub> = 3.3 V, T<sub>A</sub> = 25°C
- Typical V<sub>OHV</sub> (Output V<sub>OH</sub> Undershoot)
   >2 V at V<sub>CC</sub> = 3.3 V, T<sub>A</sub> = 25°C
- Inputs and Open-Drain Outputs Accept Voltages up to 5.5 V
- I<sub>off</sub> Supports Live Insertion, Partial-Power-Down Mode and Back-Drive Protection
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- Supports Down-Translation (5 V to 3.3 V and 3.3 V to 1.8 V)
- ESD Protection Exceeds JESD 22
  - 2000-V Human Body Model (A114-A)
  - 200-V Machine Model (A115-A)
  - 1000-V Charged-Device Model (C101)

## 2 Applications

- AV Receivers
- Blu-ray Players and Home Theaters
- DVD Recorders and Players
- Desktop or Notebook PCs
- Digital Radio or Internet Radio Players
- Digital Video Cameras (DVC)
- Embedded PC
- GPS: Personal Navigation Devices
- Mobile Internet Devices
- Network Projector Front-End
- Portable Media Players
- Pro Audio Mixers
- Smoke Detectors
- Solid-State Drive (SSD): Enterprise
- High-Definition (HDTV)

### 3 Description

Tools &

Software

This dual inverter buffer and driver is designed for 1.65-V to 5.5-V  $V_{CC}$  operation.

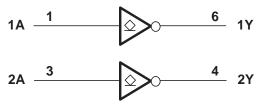
Support &

Community

**...** 

The output of the SN74LVC2G06 device is an opendrain which can be connected to other open-drain outputs to implement active-low, wired-OR, or activehigh wired-AND functions. The maximum sink current is 32 mA.

This device is fully specified for partial-power-down applications using  $I_{off}$ . The  $I_{off}$  circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.


NanoFree<sup>™</sup> package technology is a major breakthrough in IC packaging concepts, using the die as the package.

#### Device Information<sup>(1)</sup>

| PACKAGE    | BODY SIZE (NOM)                              |  |  |  |  |  |  |  |  |  |
|------------|----------------------------------------------|--|--|--|--|--|--|--|--|--|
| SOT-23 (6) | 2.90 mm × 1.60 mm                            |  |  |  |  |  |  |  |  |  |
| SC70 (6)   | 2.00 mm × 1.25 mm                            |  |  |  |  |  |  |  |  |  |
| SON (6)    | 1.45 mm × 1.00 mm                            |  |  |  |  |  |  |  |  |  |
| SON (6)    | 1.00 mm × 1.00 mm                            |  |  |  |  |  |  |  |  |  |
| DSBGA (6)  | 1.41 mm × 0.91 mm                            |  |  |  |  |  |  |  |  |  |
|            | SOT-23 (6)<br>SC70 (6)<br>SON (6)<br>SON (6) |  |  |  |  |  |  |  |  |  |

(1) For all available packages, see the orderable addendum at the end of the data sheet.





1

2

3

4

5

6

7

8

2

#### **Table of Contents** Features ..... 1

| Description |                                              |   |  |  |  |  |  |  |
|-------------|----------------------------------------------|---|--|--|--|--|--|--|
| Pin         | Configuration and Functions                  | 3 |  |  |  |  |  |  |
| Spe         | cifications                                  | 4 |  |  |  |  |  |  |
| 6.1         | Absolute Maximum Ratings                     | 4 |  |  |  |  |  |  |
| 6.2         | ESD Ratings                                  | 4 |  |  |  |  |  |  |
| 6.3         | Recommended Operating Conditions             | 5 |  |  |  |  |  |  |
| 6.4         | Thermal Information                          | 5 |  |  |  |  |  |  |
| 6.5         | Electrical Characteristics                   | 6 |  |  |  |  |  |  |
| 6.6         | Switching Characteristics for -40°C to 85°C  | 6 |  |  |  |  |  |  |
| 6.7         | Switching Characteristics for -40°C to 125°C | 6 |  |  |  |  |  |  |
| 6.8         | Operating Characteristics                    | 6 |  |  |  |  |  |  |
| 6.9         | Typical Characteristics                      | 7 |  |  |  |  |  |  |
| Para        | ameter Measurement Information               | 8 |  |  |  |  |  |  |
| Deta        | ailed Description                            | 9 |  |  |  |  |  |  |

Applications ..... 1

|    | 8.2  | Functional Block Diagram                 | 9   |
|----|------|------------------------------------------|-----|
|    | 8.3  | Feature Description                      | . 9 |
|    | 8.4  | Device Functional Modes                  | 9   |
| 9  | Арр  | lication and Implementation              | 10  |
|    | 9.1  | Application Information                  | 10  |
|    | 9.2  | Typical Application                      | 10  |
| 10 | Pow  | ver Supply Recommendations               | 11  |
| 11 | Lay  | out                                      | 11  |
|    | 11.1 | Layout Guidelines                        | 11  |
|    | 11.2 | Layout Example                           | 11  |
| 12 | Dev  | ice and Documentation Support            | 12  |
|    | 12.1 | Community Resources                      | 12  |
|    | 12.2 | Trademarks                               | 12  |
|    | 12.3 | Electrostatic Discharge Caution          | 12  |
|    | 12.4 | Glossary                                 | 12  |
| 13 |      | hanical, Packaging, and Orderable mation | 12  |
|    |      |                                          |     |

## 4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

#### Changes from Revision I (December 2013) to Revision J

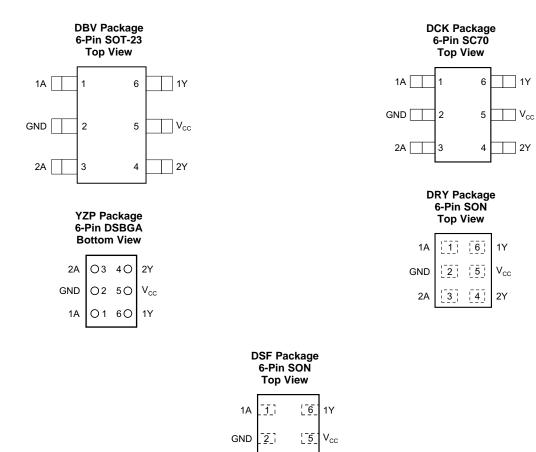
### Added Device Information table, Pin Configuration and Functions section, ESD Ratings table, Typical Characteristics section, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ......1

## Changes from Revision H (August 2012) to Revision I

Added ESD warning ...... 1 

| Cł | hanges from Revision G (January 2007) to Revision H                      | Page |  |
|----|--------------------------------------------------------------------------|------|--|
| •  | Updated package views and ordering information. Added DRY & DSF packages | 1    |  |




www.ti.com

Page

Page



## 5 Pin Configuration and Functions



#### **Pin Functions**

<u>4</u> 2Y

2A 3

| P               | N  | <b>I/O</b> | DESCRIPTION         |
|-----------------|----|------------|---------------------|
| NAME            | NO | 10         | DESCRIPTION         |
| GND             | 2  | —          | Ground              |
| 1A              | 1  | I          | Input 1             |
| 2A              | 3  | I          | Input 2             |
| 1Y              | 6  | I          | Open-drain output 1 |
| 2Y              | 4  | 0          | Open-drain output 2 |
| V <sub>CC</sub> | 5  | —          | Power pin           |

## 6 Specifications

#### 6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                  |                                                                          |                    | MIN  | MAX  | UNIT |
|------------------|--------------------------------------------------------------------------|--------------------|------|------|------|
| $V_{CC}$         | Supply voltage                                                           |                    | -0.5 | 6.5  | V    |
| VI               | Input voltage <sup>(2)</sup>                                             |                    | -0.5 | 6.5  | V    |
| Vo               | Voltage applied to any output in the high-impedance of                   | -0.5               | 6.5  | V    |      |
| Vo               | Voltage applied to any output in the high or low state <sup>(2)(3)</sup> |                    |      | 6.5  | V    |
| I <sub>IK</sub>  | Input clamp current                                                      | V <sub>1</sub> < 0 |      | -50  | mA   |
| I <sub>OK</sub>  | Output clamp current                                                     | V <sub>0</sub> < 0 |      | -50  | mA   |
| I <sub>O</sub>   | Continuous output current                                                |                    |      | ±50  | mA   |
|                  | Continuous current through V <sub>CC</sub> or GND                        |                    |      | ±100 | mA   |
| T <sub>stg</sub> | Storage Temperature                                                      |                    | -65  | 150  | °C   |

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V<sub>CC</sub> is provided in the *Recommended Operating Conditions* table.

## 6.2 ESD Ratings

|                    |                         |                                                                                       | VALUE | UNIT |
|--------------------|-------------------------|---------------------------------------------------------------------------------------|-------|------|
|                    |                         | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup>                     | +2000 |      |
| V <sub>(ESD)</sub> | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{\left( 2\right) }$ | +1000 | V    |

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.



### 6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                                                                                                                 |                                                                                                                              |                                                                              | MIN                    | NOM MAX                | UNIT |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------|------------------------|------|
| V                                                                                                               | Currente vielte ere                                                                                                          | Operating                                                                    | 1.65                   | 5.5                    | v    |
| VCC                                                                                                             | Supply voltage                                                                                                               | Data retention only                                                          | 1.5                    |                        | v    |
| V <sub>IH</sub> H<br>V <sub>IL</sub> I<br>V <sub>0</sub> (                                                      |                                                                                                                              | V <sub>CC</sub> = 1.65 V to 1.95 V                                           | 0.65 × V <sub>CC</sub> |                        |      |
|                                                                                                                 |                                                                                                                              | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$                                   | 1.7                    |                        |      |
| VIH                                                                                                             | High-level input voltage                                                                                                     | $V_{CC} = 3 \vee to 3.6 \vee$                                                | 2                      |                        | V    |
| V <sub>IH</sub> F<br>V <sub>IL</sub> L<br>V <sub>I</sub> II<br>V <sub>O</sub> C<br>I <sub>OL</sub> L<br>Δt/Δv I |                                                                                                                              | $V_{CC} = 4.5 V \text{ to } 5.5 V$                                           | 0.7 × V <sub>CC</sub>  |                        |      |
|                                                                                                                 | <ul> <li>High-level input voltage</li> <li>Low-level input voltage</li> <li>Input voltage</li> <li>Output voltage</li> </ul> | V <sub>CC</sub> = 1.65 V to 1.95 V                                           |                        | 0.35 × V <sub>CC</sub> |      |
| V <sub>IH</sub> H<br>V <sub>IL</sub> L<br>V <sub>I</sub> I<br>V <sub>0</sub> C                                  |                                                                                                                              | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$                                   |                        | 0.7                    | V    |
|                                                                                                                 | Low-level input voltage                                                                                                      | $V_{CC} = 3 \vee to 3.6 \vee$                                                |                        | 0.8                    | V    |
|                                                                                                                 |                                                                                                                              | $V_{CC} = 4.5 V \text{ to } 5.5 V$                                           |                        | $0.3 \times V_{CC}$    |      |
| VI                                                                                                              | Input voltage                                                                                                                | -                                                                            | 0                      | 5.5                    | V    |
| Vo                                                                                                              | Output voltage                                                                                                               |                                                                              | 0                      | 5.5                    | V    |
|                                                                                                                 |                                                                                                                              | V <sub>CC</sub> = 1.65 V                                                     |                        | 4                      |      |
|                                                                                                                 |                                                                                                                              | V <sub>CC</sub> = 2.3 V                                                      |                        | 8                      |      |
| I <sub>OL</sub>                                                                                                 | High-level input voltage<br>Low-level input voltage<br>Input voltage<br>Output voltage                                       | <u> </u>                                                                     |                        | 16                     | mA   |
|                                                                                                                 |                                                                                                                              | $V_{CC} = 3 V$                                                               |                        | 24                     |      |
|                                                                                                                 |                                                                                                                              | $V_{CC} = 4.5 V$                                                             |                        | 32                     |      |
|                                                                                                                 |                                                                                                                              | $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$ |                        | 20                     |      |
| Δt/Δv                                                                                                           | Input transition rise or fall rate                                                                                           | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$                                   |                        | 10                     | ns/V |
|                                                                                                                 |                                                                                                                              | $V_{CC} = 5 V \pm 0.5 V$                                                     |                        | 5                      |      |
| T <sub>A</sub>                                                                                                  | Operating free-air temperature                                                                                               |                                                                              | -40                    | 125                    | °C   |

 All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

#### 6.4 Thermal Information

|                |                                        |                  | SN74LVC2G06 |           |             |           |      |  |  |
|----------------|----------------------------------------|------------------|-------------|-----------|-------------|-----------|------|--|--|
|                | THERMAL METRIC <sup>(1)</sup>          | DBV (SOT-<br>23) | DCK (SC70)  | DRY (SON) | YPZ (DSBGA) | DSF (SON) | UNIT |  |  |
|                |                                        | 6 PINS           | 6 PINS      | 6 PINS    | 6 PINS      | 6 PINS    |      |  |  |
| $R_{\thetaJA}$ | Junction-to-ambient thermal resistance | 165              | 259         | 234       | 123         | 300       | °C/W |  |  |

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

#### SN74LVC2G06

SCES307J-AUGUST 2001-REVISED JULY 2015

STRUMENTS www.ti.com

XAS

#### 6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

| DADAMETER               | TEST CONDITIONS                                                   | v               | –40°C to 85°C              | –40°C to 125°C             |      |
|-------------------------|-------------------------------------------------------------------|-----------------|----------------------------|----------------------------|------|
| PARAMETER               | TEST CONDITIONS                                                   | V <sub>cc</sub> | MIN TYP <sup>(1)</sup> MAX | MIN TYP <sup>(1)</sup> MAX | UNIT |
|                         | I <sub>OL</sub> = 100 μA                                          | 1.65 V to 5.5 V | 0.1                        | 0.1                        |      |
|                         | $I_{OL} = 4 \text{ mA}$                                           | 1.65 V          | 0.45                       | 0.45                       |      |
| N                       | I <sub>OL</sub> = 8 mA                                            | 2.3 V           | 0.3                        | 0.3                        | V    |
| V <sub>OL</sub>         | I <sub>OL</sub> = 16 mA                                           | 3 V             | 0.4                        | 0.4                        | v    |
|                         | I <sub>OL</sub> = 24 mA                                           | 3 V             | 0.55                       | 0.55                       |      |
|                         | I <sub>OL</sub> = 32 mA                                           | 4.5 V           | 0.55                       | 0.55                       |      |
| I <sub>I</sub> A inputs | $V_I = 5.5 V \text{ or GND}$                                      | 0 to 5.5 V      | ±5                         | ±5                         | μA   |
| I <sub>off</sub>        | $V_{I} \text{ or } V_{O} = 5.5 \text{ V}$                         | 0               | ±10                        | ±10                        | μA   |
| I <sub>CC</sub>         | $V_{I} = 5.5 \text{ V or GND}, \qquad I_{O} = 0$                  | 1.65 V to 5.5 V | 10                         | 10                         | μA   |
| ΔI <sub>CC</sub>        | One input at $V_{CC}$ – 0.6 V,<br>Other inputs at $V_{CC}$ or GND | 3 V to 5.5 V    | 500                        | 500                        | μΑ   |
| Ci                      | $V_I = V_{CC}$ or GND                                             | 3.3 V           | 3.5                        | 3.5                        | рF   |

(1) All typical values are at  $V_{CC} = 3.3$  V,  $T_A = 25^{\circ}C$ .

#### 6.6 Switching Characteristics for -40°C to 85°C

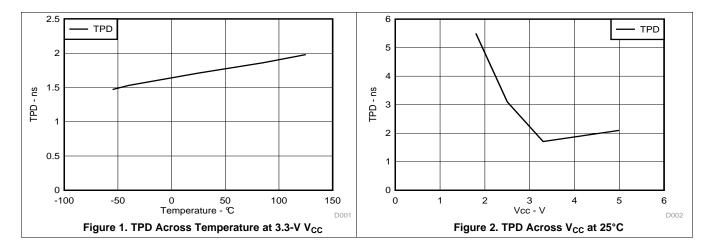
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

| PARAMETER       | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CC</sub> =<br>± 0.1 |     | V <sub>CC</sub> =<br>± 0.2 |     | V <sub>CC</sub> =<br>± 0.3 |     | V <sub>CC</sub> =<br>± 0.5 |     | UNIT |
|-----------------|-----------------|----------------|----------------------------|-----|----------------------------|-----|----------------------------|-----|----------------------------|-----|------|
|                 | (INFOT)         | (001F01)       | MIN                        | MAX | MIN                        | MAX | MIN                        | MAX | MIN                        | MAX |      |
| t <sub>pd</sub> | А               | Y              | 1.8                        | 7.2 | 1                          | 3.9 | 1                          | 3.4 | 1                          | 2.9 | ns   |

#### 6.7 Switching Characteristics for -40°C to 125°C

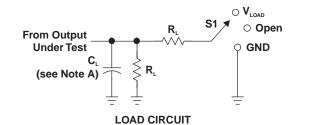
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

| PARAMETER       | FROM      | TO<br>(OUTPUT) | V <sub>CC</sub> =<br>± 0.1 |     | V <sub>CC</sub> = 1<br>± 0.2 |     | V <sub>CC</sub> =<br>± 0.3 |     | V <sub>CC</sub> =<br>± 0.5 |     | UNIT |
|-----------------|-----------|----------------|----------------------------|-----|------------------------------|-----|----------------------------|-----|----------------------------|-----|------|
|                 | (INPUT) ( |                | MIN                        | MAX | MIN                          | MAX | MIN                        | MAX | MIN                        | MAX |      |
| t <sub>pd</sub> | А         | Y              | 1.8                        | 8.2 | 1                            | 4.4 | 1                          | 3.9 | 1                          | 3.4 | ns   |


#### 6.8 **Operating Characteristics**

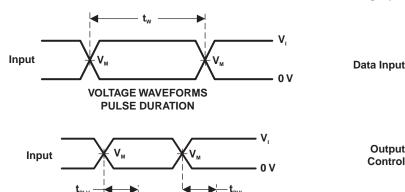
 $T_A = 25^{\circ}C$ 

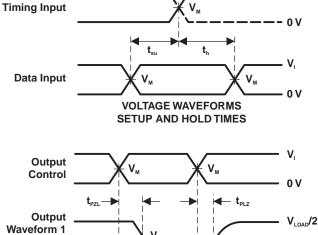
|                 | PARAMETER                     | TEST CONDITIONS | V <sub>CC</sub> = 1.8 V | $V_{CC} = 2.5 V$ | $V_{CC} = 3.3 V$ | $V_{CC} = 5 V$ | UNIT |  |
|-----------------|-------------------------------|-----------------|-------------------------|------------------|------------------|----------------|------|--|
|                 | FARAMETER                     | TEST CONDITIONS | TYP                     | TYP              | TYP              | TYP            | UNIT |  |
| C <sub>pd</sub> | Power dissipation capacitance | f = 10 MHz      | 2                       | 2                | 3                | 4              | pF   |  |

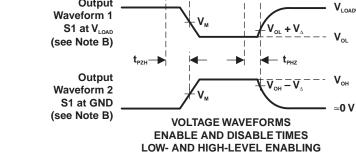



## 6.9 Typical Characteristics




V,


#### Parameter Measurement Information 7




| TEST                                 | S1         |
|--------------------------------------|------------|
| t <sub>PZL</sub> (see Notes E and F) | VLOAD      |
| t <sub>PLZ</sub> (see Notes E and G) | VLOAD      |
| t <sub>PHZ</sub> /t <sub>PZH</sub>   | $V_{load}$ |

|                                     | INPUTS          |         |                    |                     | •     | -            |              |  |
|-------------------------------------|-----------------|---------|--------------------|---------------------|-------|--------------|--------------|--|
| V <sub>cc</sub>                     | V               | t,/t,   | V <sub>M</sub>     | VLOAD               | C     | RL           | $V_{\Delta}$ |  |
| $1.8V\pm0.15V$                      | V <sub>cc</sub> | ≤2 ns   | V <sub>cc</sub> /2 | 2 × V <sub>cc</sub> | 30 pF | <b>1 k</b> Ω | 0.15 V       |  |
| $\textbf{2.5 V} \pm \textbf{0.2 V}$ | V <sub>cc</sub> | ≤2 ns   | V <sub>cc</sub> /2 | 2 × V <sub>cc</sub> | 30 pF | <b>500</b> Ω | 0.15 V       |  |
| $\textbf{3.3 V} \pm \textbf{0.3 V}$ | 3 V             | ≤2.5 ns | 1.5 V              | 6 V                 | 50 pF | <b>500</b> Ω | 0.3 V        |  |
| $5$ V $\pm$ 0.5 V                   | V <sub>cc</sub> | ≤2.5 ns | V <sub>cc</sub> /2 | $2 \times V_{cc}$   | 50 pF | <b>500</b> Ω | 0.3 V        |  |







NOTES: A. C<sub>L</sub> includes probe and jig capacitance.

**VOLTAGE WAVEFORMS** 

**PROPAGATION DELAY TIMES** 

INVERTING AND NONINVERTING OUTPUTS

Output

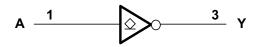
Output

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators have the following characteristics: PRR  $\leq$  10 MHz, Z<sub>o</sub> = 50  $\Omega$ .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. Because this device has open-drain outputs,  $t_{PLZ}$  and  $t_{PZL}$  are the same as  $t_{PD}$ .

 $V_{\text{OH}}$ 

 $V_{\text{ol}}$ 

- F.  $t_{_{PZL}}$  is measured at  $V_{_{M}}$
- G.  $t_{PLZ}$  is measured at  $V_{OL} + V_{A}$ .
- H. All parameters and waveforms are not applicable to all devices.


#### Figure 3. Load Circuit and Voltage Waveforms (Open Drain)



### 8 Detailed Description

The SN74LVC2G06 dual open-drain inverter device contains one open-drain inverter with a maximum sink current of 32 mA. This device is fully specified for partial-power-down applications using I<sub>off</sub>. The I<sub>off</sub> circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

#### 8.2 Functional Block Diagram



#### 8.3 Feature Description

The wide operating voltage range of 1.65 V to 5.5 V allows the SN74LVC2G06 to be used in systems with many different voltage rails. In addition, the voltage tolerance on the output allows the device to be used for inverting up-translation or down-translation. The  $I_{OFF}$  feature safely allows voltage on the inputs and outputs when there's no  $V_{CC}$  is present.

#### 8.4 Device Functional Modes

Table 1 lists the functional modes of the SN74LVC2G06.

#### Table 1. Function Table

| INPUT<br>A | OUTPUT<br>Y |
|------------|-------------|
| L          | Hi-Z        |
| Н          | L           |

Texas Instruments

www.ti.com

### 9 Application and Implementation

#### NOTE

Information in the following applications sections is not part of the TI component specification and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

#### 9.1 Application Information

The SN74LVC2G06 is a dual high-drive CMOS device that implements a high-output drive buffer, such as an LED application. This device can sink 32 mA of current at 4.5 V making it ideal for high-drive applications and high-speed applications up to 100 MHz. The inputs are 5.5-V tolerant and let it to translate up or down to  $V_{CC}$ . The following *Typical Application* shows a simple LED driver application for a single channel of the device.

#### 9.2 Typical Application

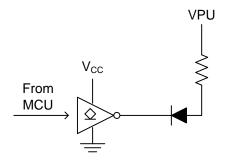
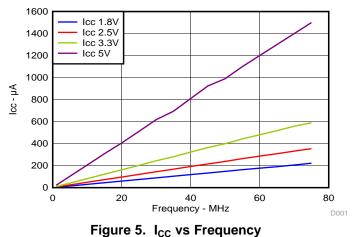



Figure 4. Typical Application Diagram

#### 9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Avoid bus contention because it can drive currents that exceed maximum limits. The high drive also creates fast edges into light loads. Consider routing and load conditions to prevent ringing.


#### 9.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
  - Rise time and fall time specs. See ( $\Delta t/\Delta V$ ) in the *Recommended Operating Conditions* table.
  - Specified high and low levels. See (V<sub>IH</sub> and V<sub>IL</sub>) in the *Recommended Operating Conditions* table.
  - Inputs are overvoltage tolerant allowing them to go as high as (V<sub>1</sub> max) in the *Recommended Operating* Conditions table at any valid  $V_{CC}$ .
- 2. Recommend Output Conditions
  - Load currents should not exceed (I<sub>O</sub> max) per output and should not exceed (Continuous current through V<sub>CC</sub> or GND) total current for the part. These limits are located in *Absolute Maximum Ratings* table.
  - Do not pull outputs above 5.5 V.



#### **Typical Application (continued)**

#### 9.2.3 Application Curve



### **10** Power Supply Recommendations

The power supply can be any voltage between the min and max supply voltage rating located in the *Recommended Operating Conditions* table.

Each V<sub>CC</sub> pin must have a good bypass capacitor in order to prevent power disturbance. For devices with a single supply, a 0.1- $\mu$ F capacitor is recommended and if there are multiple V<sub>CC</sub> pins then a 0.01- $\mu$ F or 0.022- $\mu$ F capacitor is recommended for each power pin. It is ok to parallel multiple bypass caps to reject different frequencies of noise. 0.1- $\mu$ F and 1- $\mu$ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

### 11 Layout

#### **11.1 Layout Guidelines**

When using multiple bit logic devices, inputs must never float. In many cases, functions or parts of functions of digital logic devices are unused. Examples include when only two inputs of a triple input and gate are used or when only three of the four buffer gates are used. Avoid leaving input pins unconnected because the undefined voltages at the outside connections result in undefined operational states. Observe the following rules under all circumstances. Connect all unused inputs of digital logic devices to a high or low bias to prevent them from floating. Based on the function of the device, apply the logic level to any unused input. Based on convenience, tie unused inputs to the GND or the  $V_{CC}$ .

#### 11.2 Layout Example



Figure 6. Layout Recommendation



## **12 Device and Documentation Support**

#### 12.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E<sup>™</sup> Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

**Design Support TI's Design Support** Quickly find helpful E2E forums along with design support tools and contact information for technical support.

#### 12.2 Trademarks

NanoFree, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

#### 12.3 Electrostatic Discharge Caution



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

### 12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

### 13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.



18-Sep-2015

## PACKAGING INFORMATION

| Orderable Device  | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2)            | Lead/Ball Finish<br>(6) | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|-------------------|---------------|--------------|--------------------|------|----------------|----------------------------|-------------------------|--------------------|--------------|-------------------------|---------|
| SN74LVC2G06DBVR   | ACTIVE        | SOT-23       | DBV                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -40 to 125   | (C065 ~ C06R)           | Samples |
| SN74LVC2G06DBVRE4 | ACTIVE        | SOT-23       | DBV                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -40 to 125   | (C065 ~ C06R)           | Samples |
| SN74LVC2G06DBVRG4 | ACTIVE        | SOT-23       | DBV                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -40 to 125   | (C065 ~ C06R)           | Samples |
| SN74LVC2G06DCKR   | ACTIVE        | SC70         | DCK                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -40 to 125   | (CT5 ~ CTR)             | Samples |
| SN74LVC2G06DCKRE4 | ACTIVE        | SC70         | DCK                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -40 to 125   | (CT5 ~ CTR)             | Samples |
| SN74LVC2G06DCKRG4 | ACTIVE        | SC70         | DCK                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -40 to 125   | (CT5 ~ CTR)             | Samples |
| SN74LVC2G06DRYR   | ACTIVE        | SON          | DRY                | 6    | 5000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -40 to 125   | СТ                      | Samples |
| SN74LVC2G06DSFR   | ACTIVE        | SON          | DSF                | 6    | 5000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -40 to 125   | СТ                      | Samples |
| SN74LVC2G06YZPR   | ACTIVE        | DSBGA        | YZP                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | SNAGCU                  | Level-1-260C-UNLIM | -40 to 85    | (CT7 ~ CTN)             | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)



18-Sep-2015

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

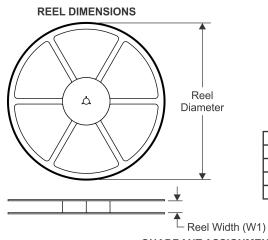
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

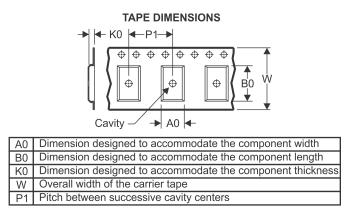
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF SN74LVC2G06 :

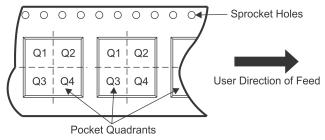
- Automotive: SN74LVC2G06-Q1
- Enhanced Product: SN74LVC2G06-EP

NOTE: Qualified Version Definitions:


- Automotive Q100 devices gualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications


## **PACKAGE MATERIALS INFORMATION**

www.ti.com


Texas Instruments

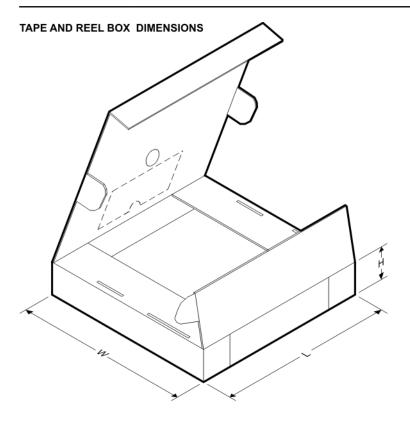
## **TAPE AND REEL INFORMATION**





## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



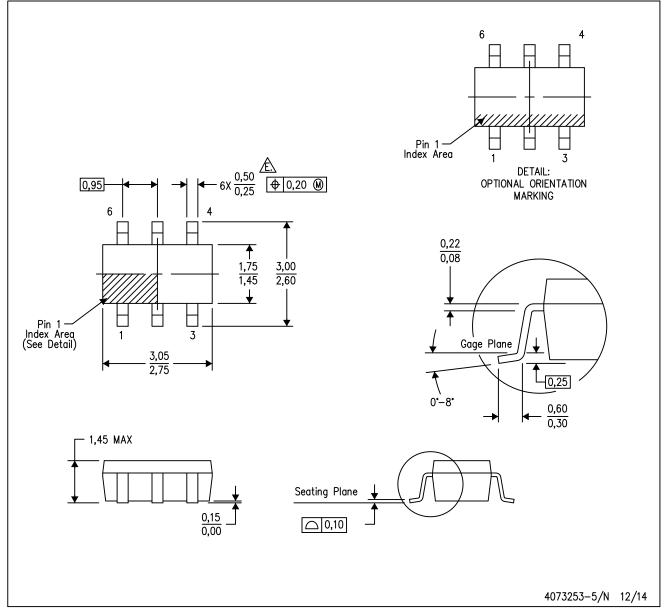

| Device          | Package<br>Type | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-----------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| SN74LVC2G06DCKR | SC70            | DCK                | 6 | 3000 | 178.0                    | 9.2                      | 2.4        | 2.4        | 1.22       | 4.0        | 8.0       | Q3               |
| SN74LVC2G06DRYR | SON             | DRY                | 6 | 5000 | 180.0                    | 9.5                      | 1.15       | 1.6        | 0.75       | 4.0        | 8.0       | Q1               |
| SN74LVC2G06DSFR | SON             | DSF                | 6 | 5000 | 180.0                    | 9.5                      | 1.16       | 1.16       | 0.5        | 4.0        | 8.0       | Q2               |
| SN74LVC2G06YZPR | DSBGA           | YZP                | 6 | 3000 | 178.0                    | 9.2                      | 1.02       | 1.52       | 0.63       | 4.0        | 8.0       | Q1               |

TEXAS INSTRUMENTS

www.ti.com

## PACKAGE MATERIALS INFORMATION

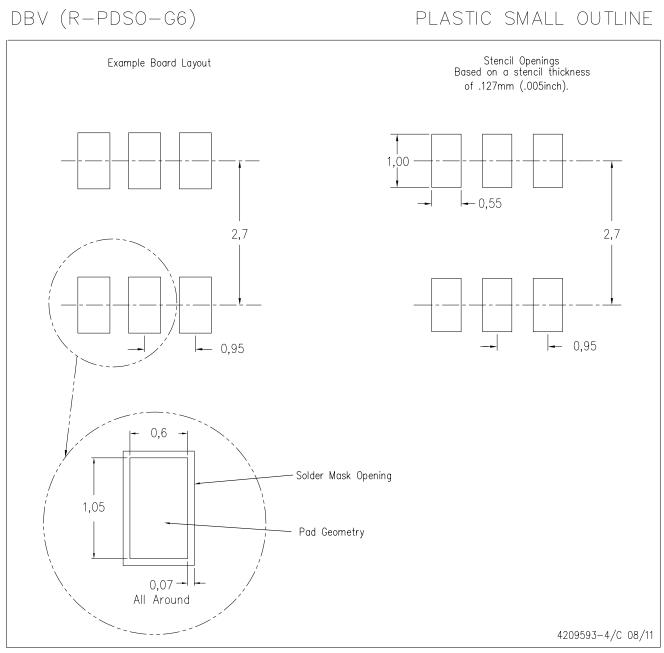
28-Oct-2015




\*All dimensions are nominal

| Device          | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN74LVC2G06DCKR | SC70         | DCK             | 6    | 3000 | 180.0       | 180.0      | 18.0        |
| SN74LVC2G06DRYR | SON          | DRY             | 6    | 5000 | 184.0       | 184.0      | 19.0        |
| SN74LVC2G06DSFR | SON          | DSF             | 6    | 5000 | 184.0       | 184.0      | 19.0        |
| SN74LVC2G06YZPR | DSBGA        | YZP             | 6    | 3000 | 220.0       | 220.0      | 35.0        |

DBV (R-PDSO-G6)


PLASTIC SMALL-OUTLINE PACKAGE

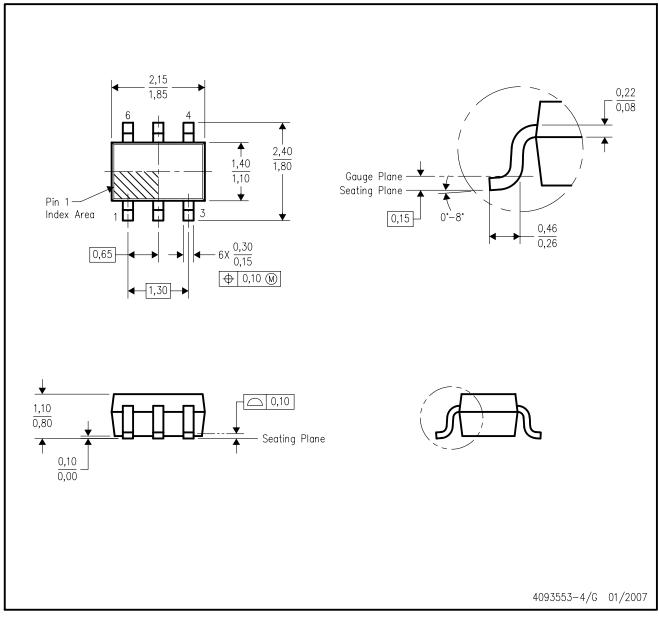


- NOTES:
  - A. All linear dimensions are in millimeters.
  - B. This drawing is subject to change without notice.
  - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
  - D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
  - E Falls within JEDEC MO-178 Variation AB, except minimum lead width.



## LAND PATTERN DATA




NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.



DCK (R-PDSO-G6)

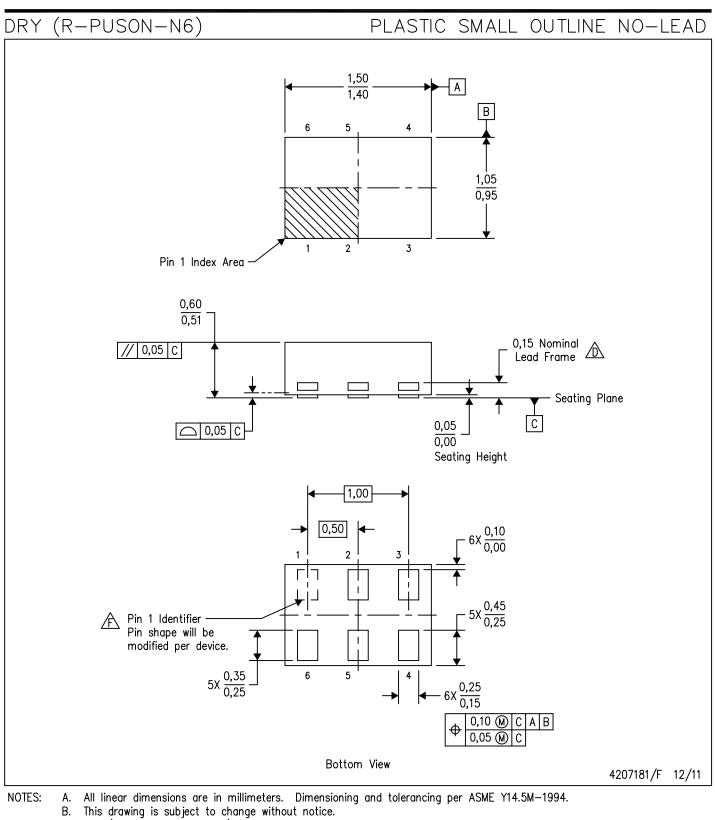
PLASTIC SMALL-OUTLINE PACKAGE



- NOTES: A. All linear dimensions are in millimeters.
  - B. This drawing is subject to change without notice.
  - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
  - D. Falls within JEDEC MO-203 variation AB.



## LAND PATTERN DATA

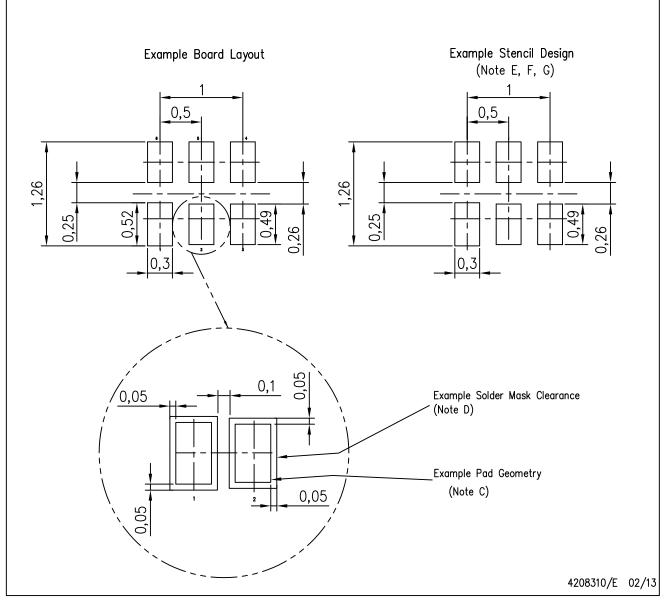



NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.



## **MECHANICAL DATA**



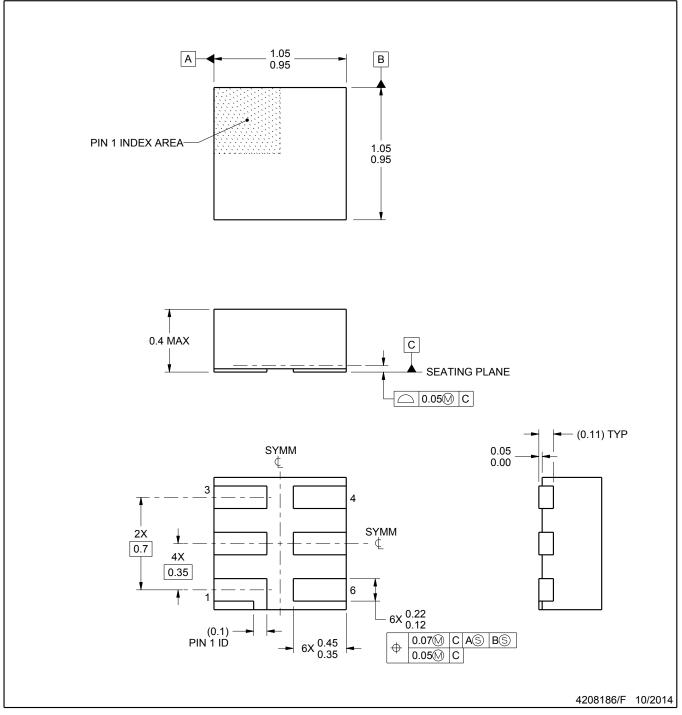

- C. SON (Small Outline No-Lead) package configuration.
- $\Delta$  The exposed lead frame feature on side of package may or may not be present due to alternative lead frame designs.
- E. This package complies to JEDEC MO-287 variation UFAD.
- 🖄 See the additional figure in the Product Data Sheet for details regarding the pin 1 identifier shape.



DRY (R-PUSON-N6)

PLASTIC SMALL OUTLINE NO-LEAD



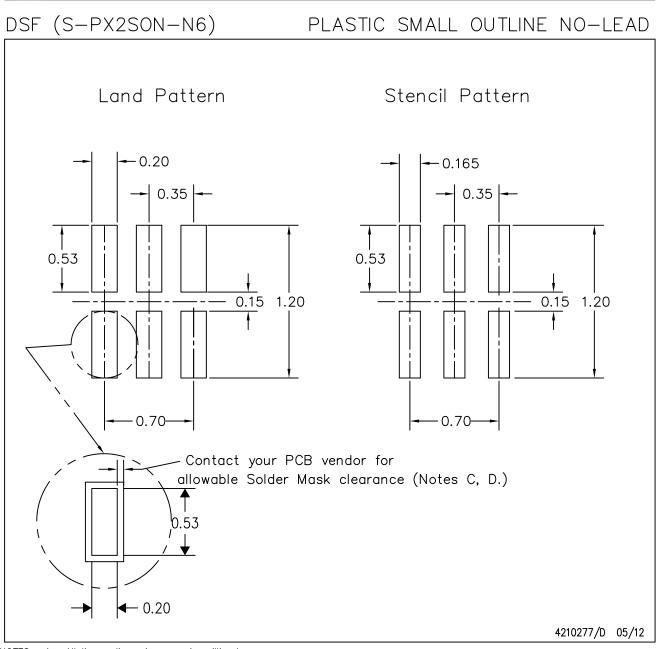

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

TEXAS INSTRUMENTS www.ti.com

## MECHANICAL DATA

### PLASTIC SMALL OUTLINE NO-LEAD




NOTES:

DSF (S-PX2SON-N6)

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing Per ASME Y14.5M.
   This drawing is subject to change without notice.
   Reference JEDEC registration MO-287, variation X2AAF.

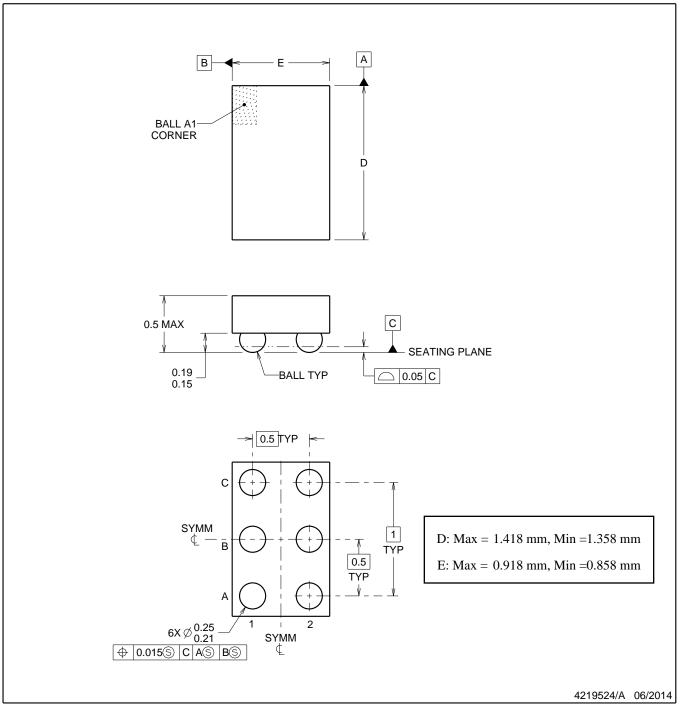




NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. If 2 mil solder mask is outside PCB vendor capability, it is advised to omit solder mask.
- E. Maximum stencil thickness 0,1016 mm (4 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Suggest stencils cut with lasers such as Fiber Laser that produce the greatest positional accuracy.
- H. Component placement force should be minimized to prevent excessive paste block deformation.




# **YZP0006**



## **PACKAGE OUTLINE**

## DSBGA - 0.5 mm max height

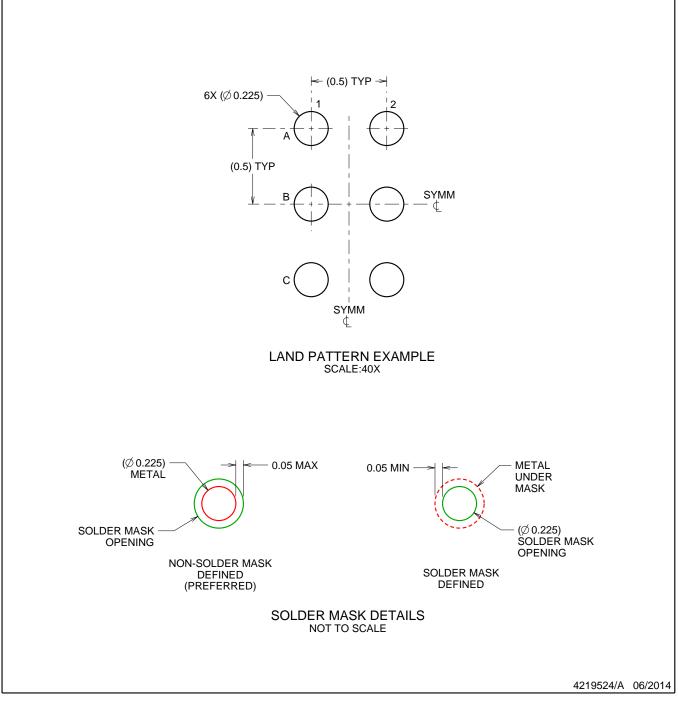
DIE SIZE BALL GRID ARRAY



NOTES:

NanoFree Is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. NanoFree<sup>™</sup> package configuration.




## YZP0006

## **EXAMPLE BOARD LAYOUT**

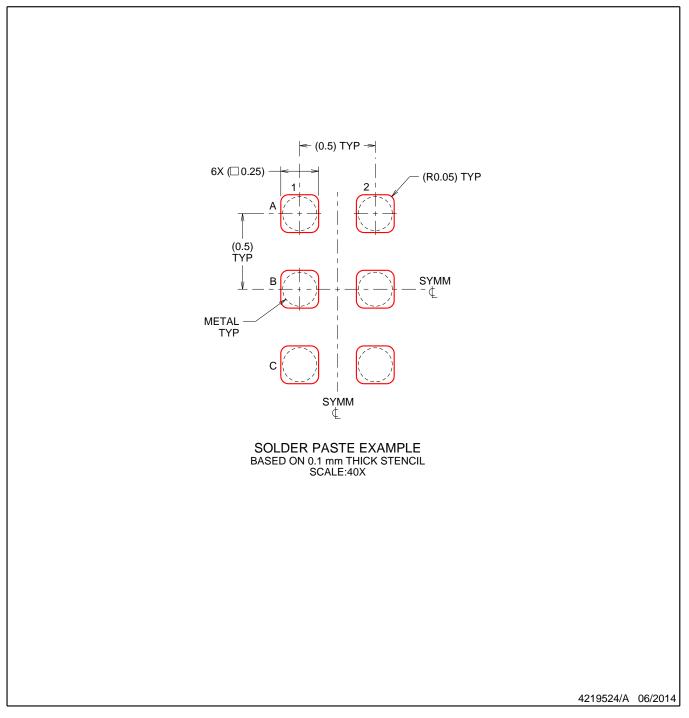
## DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).




# YZP0006

# **EXAMPLE STENCIL DESIGN**

## DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

| Products                     |                          | Applications                  |                                   |
|------------------------------|--------------------------|-------------------------------|-----------------------------------|
| Audio                        | www.ti.com/audio         | Automotive and Transportation | www.ti.com/automotive             |
| Amplifiers                   | amplifier.ti.com         | Communications and Telecom    | www.ti.com/communications         |
| Data Converters              | dataconverter.ti.com     | Computers and Peripherals     | www.ti.com/computers              |
| DLP® Products                | www.dlp.com              | Consumer Electronics          | www.ti.com/consumer-apps          |
| DSP                          | dsp.ti.com               | Energy and Lighting           | www.ti.com/energy                 |
| Clocks and Timers            | www.ti.com/clocks        | Industrial                    | www.ti.com/industrial             |
| Interface                    | interface.ti.com         | Medical                       | www.ti.com/medical                |
| Logic                        | logic.ti.com             | Security                      | www.ti.com/security               |
| Power Mgmt                   | power.ti.com             | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
| Microcontrollers             | microcontroller.ti.com   | Video and Imaging             | www.ti.com/video                  |
| RFID                         | www.ti-rfid.com          |                               |                                   |
| OMAP Applications Processors | www.ti.com/omap          | TI E2E Community              | e2e.ti.com                        |
| Wireless Connectivity        | www.ti.com/wirelessconne | ctivity                       |                                   |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated