

ESD Protector

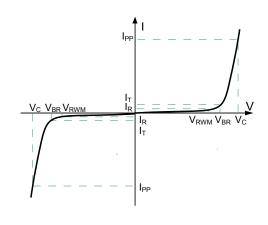
Description

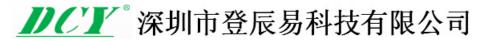
The DESDWC2D50S protects sensitive semiconductor components from damage or upset due to electrostatic discharge (ESD) and other voltage induced transient events. They feature large cross-sectional area junctions for conducting high transient currents, offer desirable electrical characteristics for board level protection, such as fast response time, low operating voltage. It gives designer the flexibility to protect one bi-directional line in applications where arrays are not practical.

Feature

- 80W peak pulse power per line (t_P = 8/20 μ s)
- DFN1006-2L package
- Replacement for MLV(0402)
- Bidirectional configurations
- Response time is typically < 1ns
- High ESD protection
- Low clamping voltage
- RoHS compliant
- Transient protection for data lines to IEC61000-4-2(ESD) ±15KV(air), ±8KV(contact)

Applications


- Cellular phones
- Portable devices
- Digital cameras
- Power supplies


Mechanical Characteristics

- Lead finish:100% matte Sn(Tin)
- Mounting position: Any
- Qualified max reflow temperature:260°C
- Device meets MSL 1 requirements
- Pure tin plating: 7 ~ 17 um
- Pin flatness:≤3mil

Electronics Parameter

Symbol	Parameter			
V_{RWM}	Peak Reverse Working Voltage			
I _R	Reverse Leakage Current @ V _{RWM}			
V_{BR}	Breakdown Voltage @ I _⊺			
I _T	Test Current			
I _{PP}	Maximum Reverse Peak Pulse Current			
V _C	Clamping Voltage @ I _{PP}			
P _{PP}	Peak Pulse Power			
CJ	Junction Capacitance			
I _F	Forward Current			
V _F	Forward Voltage @ I _F			

ESD Protector

Electrical characteristics per line@25°C (unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Peak Reverse Working Voltage	V_{RWM}				5	V
Breakdown Voltage	V_{BR}	I _t = 1mA	5.6	6.7	7.8	V
Reverse Leakage Current	I _R	V _{RWM} = 5V T=25°C			1.0	μΑ
Clamping Voltage	Vc	I _{PP} =1A			9	V
Clamping Voltage	V _C	I _{PP} =3A			12	V
Clamping Voltage	V _C	I _{PP} =5A			15	V
Junction Capacitance	C _j	V _R =0V f = 1MHz		1		pF

Absolute maximum rating@25°C

Rating	Symbol	Value	Units
Peak Pulse Power (t _p =8/20µs)	P _{pp}	80	W
Operating Temperature	TJ	-55 to +150	°C
Storage Temperature	T _{STG}	-55 to +150	°C

Typical Characteristics

Fig 1.Pulse Waveform

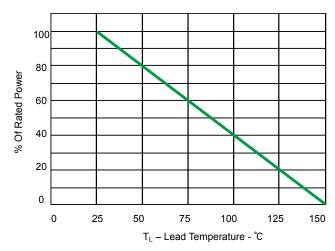


Fig 2.Power Derating Curve

ESD Protector

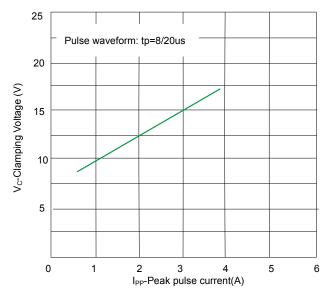


Fig 3. Clamping voltage vs. Peak pulse current

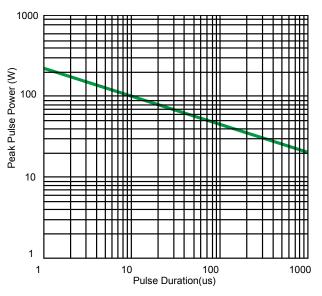
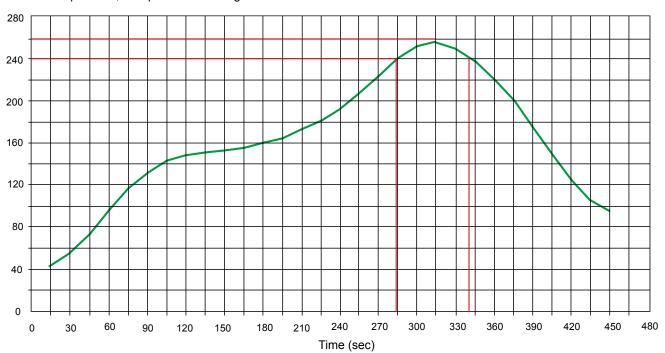



Fig 4. Non Repetitive Peak Pulse Power vs. Pulse time

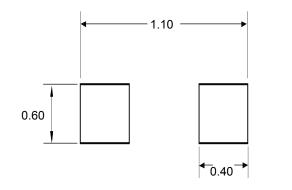
Solder Reflow Recommendation

Peak Temp=257°C, Ramp Rate=0.802deg. °C/sec

PCB Design

For TVS diodes a low-ohmic and low-inductive path to chassis earth is absolutely mandatory in order to achieve good ESD protection. Novices in the area of ESD protection should take following suggestions to heart:

- Do not use stubs, but place the cathode of the TVS diode directly on the signal trace.
- > Do not make false economies and save copper for the ground connection.
- > Place via holes to ground as close as possible to the anode of the TVS diode.
- Use as many via holes as possible for the ground connection.
- Keep the length of via holes in mind! The longer the more inductance they will have.



ESD Protector

Product dimension (DFN1006-2L)

Dim	Incl	hes	Millimeters		
	MIN	MAX	MIN	MAX	
Α	0.013	0.015	0.34	0.40	
В	0.000	0.002	0.00	0.05	
С	0.037	0.042	0.95	1.075	
D	0.021	0.026	0.55	0.675	
E	0.017	0.021	0.45	0.55	
F	0.007	0.011	0.20	0.30	
Н	0.015Typ.		0.40	Tyo.	
R	0.001	0.005	0.05	0.15	

Unit:mm