Low-Voltage CMOS 16-Bit Buffer

With 5 V–Tolerant Inputs and Outputs (3–State, Non–Inverting)

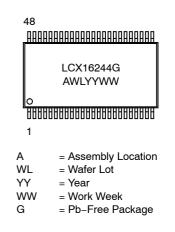
The MC74LCX16244 is a high performance, non-inverting 16-bit buffer operating from a 2.3 to 3.6 V supply. The device is nibble controlled. Each nibble has separate Output Enable inputs which can be tied together for full 16-bit operation. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX16244 inputs to be safely driven from 5.0 V devices. The MC74LCX16244 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

The 4.5 ns maximum propagation delays support high performance applications. Current drive capability is 24 mA at the outputs. The Output Enable (\overline{OEn}) inputs, when HIGH, disable the outputs by placing them in a HIGH Z condition.

The MC74LCX16244 contains sixteen non-inverting buffers with 3-state 5.0 V-tolerant outputs. The device is nibble controlled with each nibble functioning identically, but independently. The control pins may be tied together to obtain full 16-bit operation. The 3-state outputs are controlled by an Output Enable (\overline{OEn}) input for each nibble. When \overline{OEn} is LOW, the outputs are on. When \overline{OEn} is HIGH, the outputs are in the high impedance state.

Features

- Designed for 2.3 V to 3.6 V V_{CC} Operation
- 4.5 ns Maximum t_{pd}
- 5.0 V Tolerant Interface Capability With 5.0 V TTL Logic
- Supports Live Insertion and Withdrawal
- I_{OFF} Specification Guarantees High Impedance When $V_{CC} = 0 V$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (20 μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance:
 - Human Body Model >2000 V
 - Machine Model >200 V
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant



ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

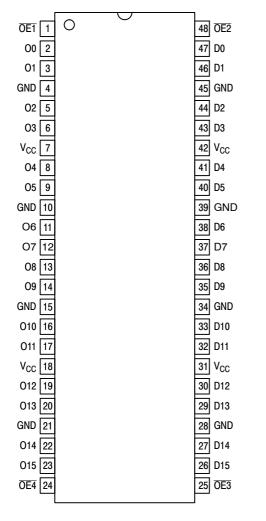


Table 1. PIN NAMES

Pins	Function
OEn	Output Enable Inputs
D0-D15	Inputs
O0-O15	Outputs

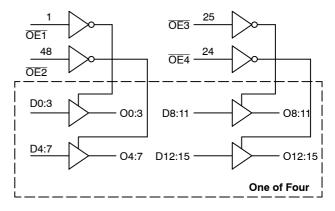


Figure 2. Logic Diagram

Figure 1. Pinout: 48-Lead (Top View)

TRUTH TABLE

OE1	D0:3	O0:3	OE2	D4:7	04:7	OE3	D8:11	O8 :11	OE4	D12:15	012:15
L	L	L	L	L	L	L	L	L	L	L	L
L	н	Н	L	Н	Н	L	Н	Н	L	Н	Н
Н	Х	Z	Н	Х	Z	Н	Х	Z	Н	Х	Z

H = High Voltage Level L = Low Voltage Level Z = High Impedance State X = High or Low Voltage Level and Transitions Are Acceptable; for I_{CC} reasons, DO NOT FLOAT Inputs.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LCX16244DTG	TSSOP-48 (Pb-Free)	39 Units / Rail
M74LCX16244DTR2G	TSSOP-48 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Units
V _{CC}	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \leq V_I \leq +7.0$		V
Vo	DC Output Voltage	$-0.5 \le V_O \le +7.0$	Output in 3-State	V
		$-0.5 \leq V_O \leq V_{CC} + 0.5$	Output in HIGH or LOW State (Note 1)	V
Ι _{ΙΚ}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	V _O > V _{CC}	mA
Ι _Ο	DC Output Source/Sink Current	±50		mA
Icc	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C
MSL	Moisture Sensitivity		Level 1	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. I_O absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Мах	Units
V _{CC}	Supply Voltage Operating Data Retention Only	2.0 1.5	2.5, 3.3 2.5, 3.3	3.6 3.6	V
VI	Input Voltage	0		5.5	V
V _O	Output Voltage (HIGH or LOW State) (3-State)	0 0		V _{CC} 5.5	V
I _{ОН}				-24 -12 -8	mA
I _{OL}	$ LOW Level Output Current \\ V_{CC} = 3.0 V - 3.6 V \\ V_{CC} = 2.7 V - 3.0 V \\ V_{CC} = 2.3 V - 2.7 V $			+24 +12 +8	mA
T _A	Operating Free-Air Temperature	-40		+85	°C
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, V _{IN} from 0.8 V to 2.0 V, V _{CC} = 3.0 V	0		10	ns/V

DC ELECTRICAL CHARACTERISTICS

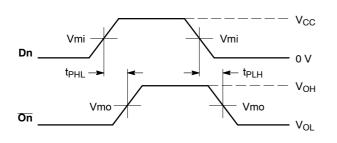
			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		
Symbol	Characteristic	Condition	Min	Max	Units
VIH	HIGH Level Input Voltage (Note 2)	$2.3~\text{V} \leq \text{V}_{CC} \leq 2.7~\text{V}$	1.7		V
		$2.7~V \leq V_{CC} \leq 3.6~V$	2.0		
V_{IL}	LOW Level Input Voltage (Note 2)	$2.3~V \leq V_{CC} \leq 2.7~V$		0.7	V
		$2.7~V \leq V_{CC} \leq 3.6~V$		0.8	
V _{OH}	HIGH Level Output Voltage	$2.3~V \leq V_{CC} \leq 3.6~V;~I_{OL} = 100~\mu A$	V _{CC} – 0.2		V
	$V_{CC} = 2.3 \text{ V}; \text{ I}_{OH} = -8 \text{ mA}$	1.8			
		V_{CC} = 2.7 V; I_{OH} = -12 mA	2.2		
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OH} = -18 \text{ mA}$	2.4		
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OH} = -24 \text{ mA}$	2.2		
V _{OL}	LOW Level Output Voltage	$2.3~V \leq V_{CC} \leq 3.6~V;~I_{OL} = 100~\mu A$		0.2	V
		V _{CC} = 2.3 V; I _{OL} = 8 mA		0.6	
		$V_{CC} = 2.7 \text{ V}; \text{ I}_{OL} = 12 \text{ mA}$		0.4	
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OL} = 16 \text{ mA}$		0.4	
		V _{CC} = 3.0 V; I _{OL} = 24 mA		0.55	
I _{OZ}	3-State Output Current	$\label{eq:VCC} \begin{array}{l} V_{CC} = 3.6 \ \text{V}, \ V_{IN} = V_{IH} \ \text{or} \ V_{IL}, \\ V_{OUT} = 0 \ \text{to} \ 5.5 \ \text{V} \end{array}$		±5	μΑ
I _{OFF}	Power Off Leakage Current	V_{CC} = 0, V_{IN} = 5.5 V or V_{OUT} = 5.5 V		10	μΑ
I _{IN}	Input Leakage Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		±5	μΑ
I _{CC}	Quiescent Supply Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$2.3 \leq V_{CC} \leq 3.6 \text{ V}; \text{ V}_{IH} = \text{V}_{CC} - 0.6 \text{ V}$		500	μΑ

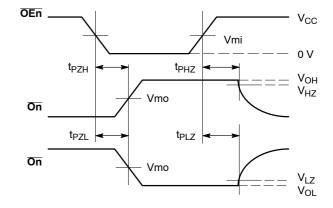
2. These values of V_I are used to test DC electrical characteristics only.

AC CHARACTERISTICS ($t_R = t_F = 2.5 \text{ ns}; R_L = 500 \Omega$)

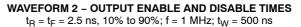
				T _A = -40°C	C to +85°C				
				8 V ± 0.3 V 50 pF		2.7 V 50 pF	V _{CC} = 2.5 C _L = 5	V ± 0.2 V 30 pF	
Symbol	Parameter	Waveform	Min	Max	Min	Max	Min	Max	Units
t _{PLH} t _{PHL}	Propagation Delay Input to Output	1	1.5 1.5	4.5 4.5	1.5 1.5	5.2 5.2	1.5 1.5	5.4 5.4	ns
t _{PZH} t _{PZL}	Output Enable Time to High and Low Level	2	1.5 1.5	5.5 5.5	1.5 1.5	6.3 6.3	1.5 1.5	7.2 7.2	ns
t _{PHZ} t _{PLZ}	Output Disable Time From High and Low Level	2	1.5 1.5	5.4 5.4	1.5 1.5	5.7 5.7	1.5 1.5	6.5 6.5	ns
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 3)			1.0 1.0					ns

 Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.


DYNAMIC SWITCHING CHARACTERISTICS


			T _A = +25°C			
Symbol	Characteristic	Condition	Min	Тур	Max	Units
V _{OLP}	Dynamic LOW Peak Voltage (Note 4)	$ \begin{array}{l} V_{CC} = 3.3 \text{ V}, \ C_L = 50 \text{ pF}, \ V_{IH} = 3.3 \text{ V}, \ V_{IL} = 0 \text{ V} \\ V_{CC} = 2.5 \text{ V}, \ C_L = 30 \text{ pF}, \ V_{IH} = 2.5 \text{ V}, \ V_{IL} = 0 \text{ V} \end{array} $		0.8 0.6		V
V _{OLV}	Dynamic LOW Valley Voltage (Note 4)	$ \begin{array}{l} V_{CC} = 3.3 \text{ V}, \ C_L = 50 \text{ pF}, \ V_{IH} = 3.3 \text{ V}, \ V_{IL} = 0 \text{ V} \\ V_{CC} = 2.5 \text{ V}, \ C_L = 30 \text{ pF}, \ V_{IH} = 2.5 \text{ V}, \ V_{IL} = 0 \text{ V} \end{array} $		-0.8 -0.6		V

4. Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

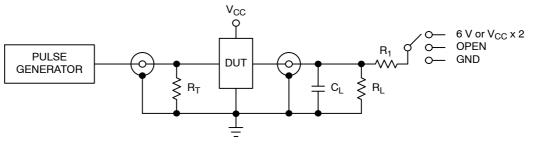

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	7	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	20	pF

WAVEFORM 1 – PROPAGATION DELAYS $t_{R} = t_{F} = 2.5 \text{ ns}, 10\% \text{ to } 90\%; f = 1 \text{ MHz}; t_{W} = 500 \text{ ns}$

Table 2. AC WAVEFORMS

		V _{cc}				
Symbol	3.3 V \pm 0.3 V	2.7 V	$\textbf{2.5 V} \pm \textbf{0.2 V}$			
Vmi	1.5 V	1.5 V	V _{CC} / 2			
Vmo	1.5 V	1.5 V	V _{CC} / 2			
V _{HZ}	V _{OL} + 0.3 V	V _{OL} + 0.3 V	V _{OL} + 0.15 V			
V _{LZ}	V _{OH} – 0.3 V	V _{OH} – 0.3 V	V _{OH} – 015 V			



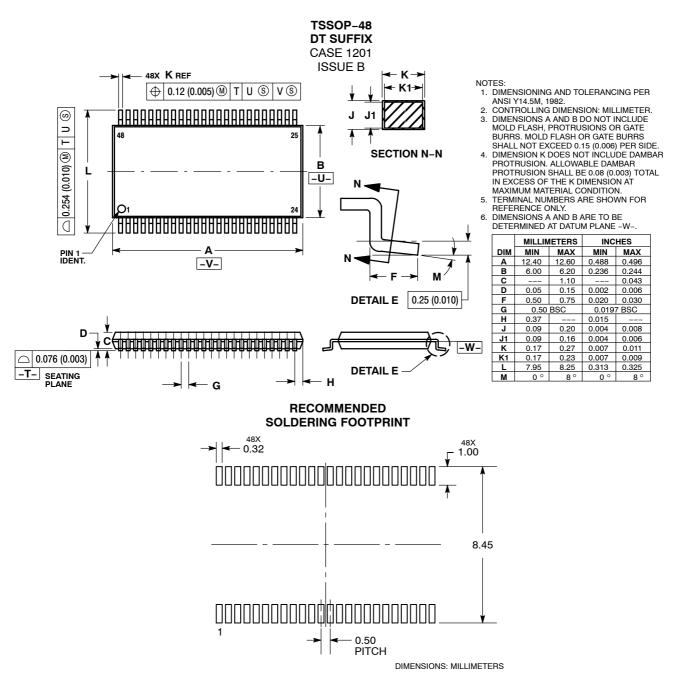

Figure 4. Test Circuit

Table 3. TEST CIRCUIT

Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6 V at V _{CC} = 3.3 ± 0.3 V 6 V at V _{CC} = 2.5 ± 0.2 V
Open Collector/Drain t_{PLH} and t_{PHL}	6 V
t _{PZH} , t _{PHZ}	GND

 C_L = 50 pF at V_{CC} = 3.3 \pm 0.3 V or equivalent (includes jig and probe capacitance) C_L = 30 pF at V_{CC} = 2.5 \pm 0.2 V or equivalent (includes jig and probe capacitance) R_L = R_1 = 500 Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 Ω)

PACKAGE DIMENSIONS

ON Semiconductor and **UD** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemic.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use as components intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resard in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: MC74LCX16244DT MC74LCX16244DTR2