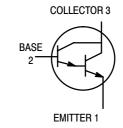
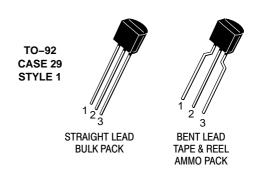
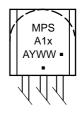
MPSA14 is a Preferred Device

Darlington Transistors NPN Silicon


Features


• Pb-Free Packages are Available*


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

x = 3 or 4 A = Assembly Location Y = Year WW = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Reference Manual, SOLDERRM/D.

Preferred devices are recommended choices for future use and best overall value.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CES}	30	Vdc
Collector-Base Voltage	V _{CBO}	30	Vdc
Emitter-Base Voltage	V _{EBO}	10	Vdc
Collector Current – Continuous	Ι _C	500	mAdc
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	625 5.0	mW mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/mW
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/mW

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•		•
Collector – Emitter Breakdown Voltage $(I_C = 100 \ \mu Adc, I_B = 0)$		V _{(BR)CES}	30	-	Vdc
Collector Cutoff Current (V_{CB} = 30 Vdc, I _E = 0)		I _{CBO}	-	100	nAdc
Emitter Cutoff Current (V_{EB} = 10 Vdc, I_C = 0)		I _{EBO}	-	100	nAdc
ON CHARACTERISTICS (Note 1)			•		•
DC Current Gain (I _C = 10 mAdc, V _{CE} = 5.0 Vdc) (I _C = 100 mAdc, V _{CE} = 5.0 Vdc)	MPSA13 MPSA14 MPSA13 MPSA14	h _{FE}	5,000 10,000 10,000 20,000		-
Collector – Emitter Saturation Voltage ($I_C = 100 \text{ mAdc}, I_B = 0.1 \text{ mAdc}$)		V _{CE(sat)}	-	1.5	Vdc
Base – Emitter On Voltage ($I_C = 100 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$)		V _{BE(on)}	-	2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current–Gain – Bandwidth Product (Note 2) (I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)		f _T	125	-	MHz

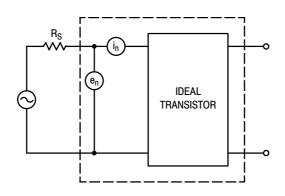
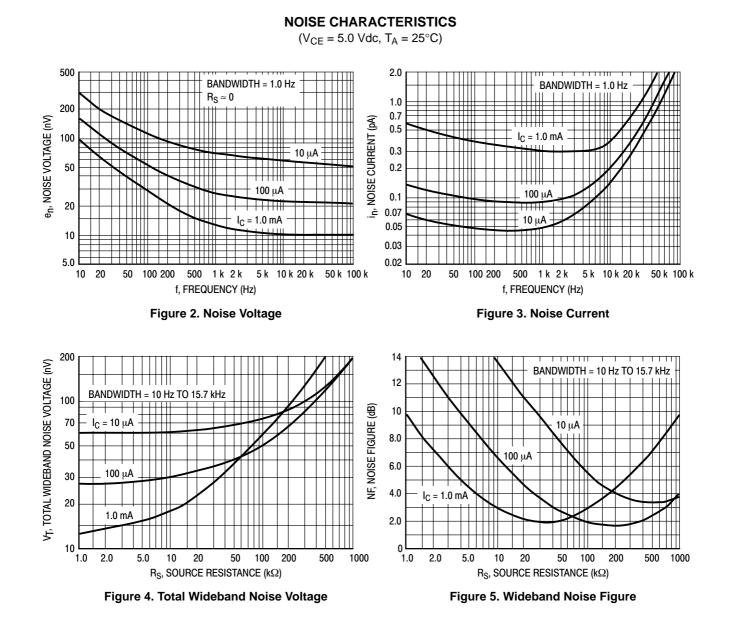
1. Pulse Test: Pulse Width \leq 300 µs; Duty Cycle \leq 2.0%.

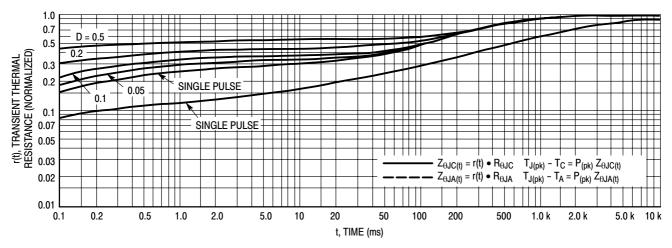
2. $f_T = |h_{fe}| \bullet f_{test}$.

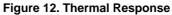
ORDERING INFORMATION

Device	Package	Shipping [†]
MPSA13	TO-92	5000 Units / Bulk
MPSA13G	TO–92 (Pb–Free)	5000 Units / Bulk
MPSA13RLRA	TO-92	2000 / Tape & Reel
MPSA13RLRAG	TO–92 (Pb–Free)	2000 / Tape & Reel
MPSA13RLRMG	TO–92 (Pb–Free)	2000 / Ammo Pack
MPSA13RLRPG	TO–92 (Pb–Free)	2000 / Ammo Pack
MPSA13ZL1G	TO–92 (Pb–Free)	2000 / Ammo Pack
MPSA14G	TO–92 (Pb–Free)	5000 Units / Bulk
MPSA14RLRAG	TO–92 (Pb–Free)	2000 / Tape & Reel
MPSA14RLRPG	TO–92 (Pb–Free)	2000 / Ammo Pack

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

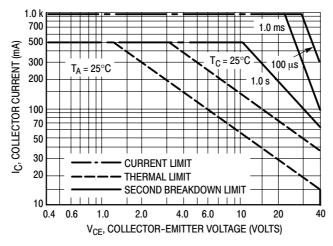
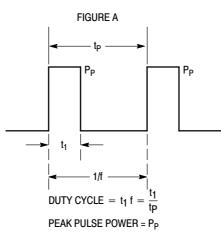

Figure 1. Transistor Noise Model

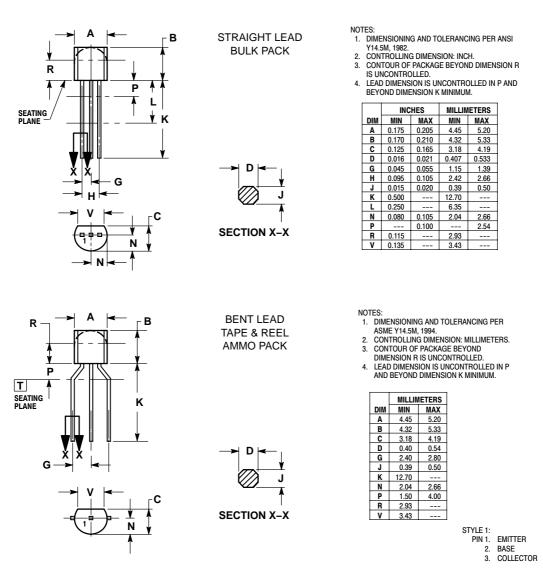


20 4.0 V_{CE} = 5.0 V SMALL-SIGNAL CURRENT GAIN f = 100 MHz $T_J = 25^{\circ}C$ $T_J=25^\circ C$ 2.0 10 Ш C, CAPACITANCE (pF) 7.0 Cibo 1.0 Cobo 0.8 5.0 0.6 3.0 0.4 hfel, 2.0 0.2 2.0 20 2.0 0.5 100 200 0.1 0.2 0.4 4.0 10 1.0 10 20 50 500 0.04 1.0 40 0.5 V_B, REVERSE VOLTAGE (VOLTS) Ic, COLLECTOR CURRENT (mA) Figure 6. Capacitance Figure 7. High Frequency Current Gain 200 k COLLECTOR-EMITTER VOLTAGE (VOLTS) 3.0 T_{.1} = 125°C 25°C 100 k 2.5 70 k 50 mA 250 mA 500 mA hFE, DC CURRENT GAIN I_C = 10 mA 25°C 50 k 2.0 30 k 20 k 1.5 10 k 7.0 k -55 °C 1.0 5.0 k V_{CE} = 5.0 V 3.0 k Ś K 2.0 k 0.5 0.5 30 200 300 500 0.1 0.2 2.0 5.0 20 50 100 200 500 1000 5.0 7.0 10 20 50 70 100 1.0 10 I_C, COLLECTOR CURRENT (mA) I_B, BASE CURRENT (μA) Figure 8. DC Current Gain **Figure 9. Collector Saturation Region** 1.6 -1.0 TEMPERATURE COEFFICIENTS (mV/°C) *APPLIES FOR I_C/I_B \leq h_{FE}/3.0 25°C TO 125°C T_J = 25°C 1 | || *R_{0VC} FOR V_{CE(sat)} 1.4 -2.0 V, VOLTAGE (VOLTS) V_{BE(sat)} @ I_C/I_B = 1000 -55 °C TO 25°C -3.0 1.2 V_{BE(on)} @ V_{CE} = 5.0 V 25°C TO 125°C 1.0 -4.0 ŤΤΙ θ_{VB} FOR V_{BE} 0.8 -5.0 -55 °C TO 25°C V_{CE(sat)} @ I_C/I_B = 1000 R_θý, 0.6 -6.05.0 7.0 50 70 100 200 300 5.0 7.0 10 10 20 30 500 20 30 50 70 100 200 300 500 I_C, COLLECTOR CURRENT (mA) I_C, COLLECTOR CURRENT (mA)

SMALL-SIGNAL CHARACTERISTICS

Figure 10. "On" Voltages


Figure 13. Active Region Safe Operating Area

Design Note: Use of Transient Thermal Resistance Data

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 **ISSUE AM**

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications and actual performance may liability of the second to the second Intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local

Phone: 81-3-5773-3850

Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

MPSA13 MPSA13RLRA MPSA13RLRM MPSA13RLRP MPSA13ZL1 MPSA14 MPSA14RLRA MPSA14RLRP