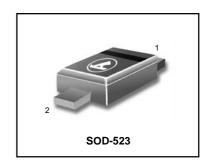


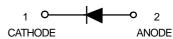
High-speed Diode

DESCRIPTION

The LBAS516T1 is a high-speed switching diode fabricated in planar technology and encapsulated in the SOD523(SC79) SMD plastic package.

FEATURES


APPLICATIONS


- · Ultra small plastic SMD package
- · High switching speed: max. 4 ns
- · Continuous reverse voltage: max. 75 V
- · Repetitive peak reverse voltage: max. 85 V
- · Repetitive peak forward current: max. 500 mA.
- \cdot We declare that the material of product compliance with RoHS requirements.
- · S- Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

1 0

· High-speed switching in e.g. surface mounted circuits.

LBAS516T1G S-LBAS516T1G

ORDERING INFORMATION

Device	Marking	Shipping
LBAS516T1G S-LBAS516T1G	6	3000 Tape & Reel
LBAS516T3G S-LBAS516T3G	6	10000 Tape & Reel

ELECTRICAL CHARACTERISTICS T j=25°C unless otherwise specified.

SYMBO	L PARAMETER	CONDITIONS	MAX.	UNIT
V_{F}	forward voltage	see Fig.2 I _F =1 mA	715	mV
		$I_F = 10 \text{ mA}$	855	mV
		$I_F=50 \text{ mA}$	1	V
		I _F = 150 mA	1.25	V
I _R	reverse current	see Fig.4 V $_R$ = 25 V	30	nΑ
		$V_R = 75 V$	1	μΑ
		$V_R = 25 V; T_j = 150 °C$	30	μΑ
		$V_R = 75 V; T_j = 150 °C;$	50	μΑ
C d	diode capacitance	$f = 1 \text{ MHz}$; $V_R = 0$; see Fig.5	1	pF
t _{rr}	reverse recovery time	when switched from $I_F=10mA$ to $I_R=10mA$;	4	ns
		R_L = 100 Ω ; measured at I_R = 1 mA; see Fig.6		
V_{fr}	forward recovery voltage	when switched from IF = 10 mA ; tr = 20 ns ; see Fig.7	1.75	V

THERMALCHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R th j-s	thermal resistance from junction to soldering point	note 1	120	K/W

Note 1. Soldering point of the cathode tab.

LBAS516T1G,S-LBAS516T1G

LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{RRM}	repetitive peak reverse voltage		_	85	V
V _R	continuous reverse voltage		_	75	V
I _F	continuous forward current	T _s =90°C; note 1; see Fig.1	_	250	mA
I FRM	repetitive peak forward current		_	500	mA
I _{FSM}	non-repetitive peak forward current	square wave; T _j =25°C prior to			
		surge; see Fig.3			
		t =1μs	_	4	Α
		t =1 ms	_	1	Α
		t =1 s	_	0.5	Α
P tot	total power dissipation	T _s =90°C; note 1	_	500	mW
T stg	storage temperature		-65	+150	°C
T j	junction temperature		_	150	°C

Note

1. Ts is the temperature at the soldering point of the cathode tab.

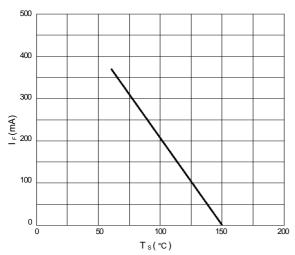


Fig.1 Maximum permissible continuous forward current as a function of soldering point temperature.

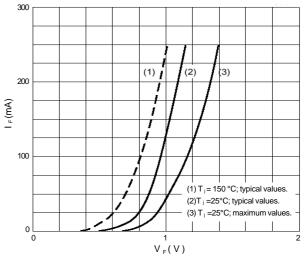


Fig.2 Forward current as a function of forward voltage.

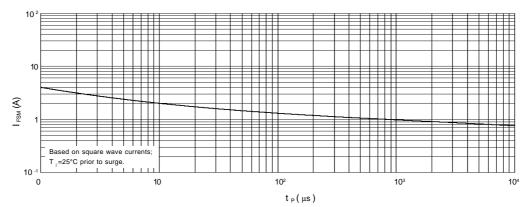


Fig.3 Maximum permissible non-repetitive peak forward current as a function of pulse duration.

LBAS516T1G,S-LBAS516T1G

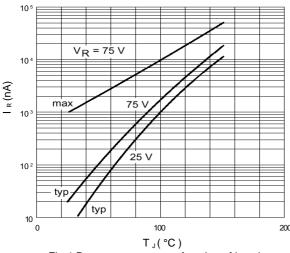


Fig.4 Reverse current as a function of junction temperature.

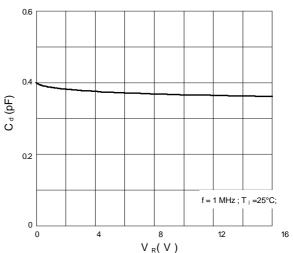
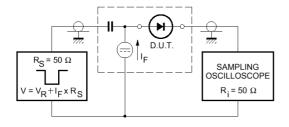
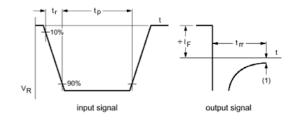
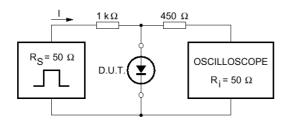
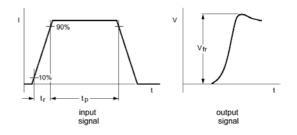




Fig.5 Diode capacitance as a function of reverse voltage; typical values.

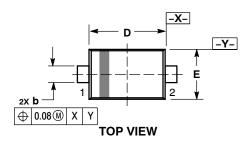


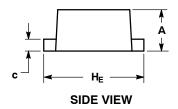


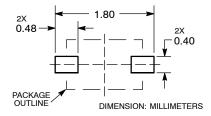
(1) $I_R = 1 \text{ mA}$.

Input signal: reverse pulse rise time t_r = 0.6 ns; reverse voltage pulse duration t_p = 100 ns; duty factor δ = 0.05; Oscilloscope: rise time t_r = 0.35 ns.

Fig.6 Reverse recovery voltage test circuit and waveforms.


Input signal: forward pulse rise time $t_{_{p}}$ = 20 ns; forward current pulse duration $t_{_{p}}$ ≥ 100 ns; duty factor δ ≤ 0.005.


Fig.7 Forward recovery voltage test circuit and waveforms.


LBAS516T1G,S-LBAS516T1G

SOD-523

RECOMMENDED SOLDERING FOOTPRINT*

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF
 BASE MATERIAL.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.50	0.60	0.70	
b	0.25	0.30	0.35	
С	0.07	0.14	0.20	
D	1.10	1.20	1.30	
E	0.70	0.80	0.90	
HE	1.50	1.60	1.70	
L	0.30 REF			
L2	0.15	0.20	0.25	