SN:DOCB20_V31 低压电动机综合保护装置PDM810

用户手册

南京能保电气有限公司版权所有

本用户手册适用于PDM810MRC系列产品V2.*版本程序。

本用户手册和产品今后可能会有小的改动,请注意核对你使用的产品与手册的版本是否相符。

1	整理档案	2015-8-27
2		
3		

更多产品信息,请访问: http://www.n-buy.cn

目录

1、概述	1
2、PDM810MRC产品型号及应用范围	1
3、PDM810MRC产品主要特点	1
4、PDM810MRC产品功能配置表	2
5、PDM810MRC 产品技术参数表	3
6、PDM810MRC产品安装	4
7、PDM810MRC 端子介绍	7
8、PDM810MRC产品接线原理图	7
9、PDM810MRC产品施工注意事项	10
10、PDM810 系列产品操作	10
11、PDM810MRC产品保护功能	12
12、PDM810MRC产品参数设置	18
13、电动机控制功能	19
14、电动机操作原理	20
15、PDM810MRC 产品选型	21

1、概述

PDM810MRC智能电动机保护控制装置主要用于690V以下低压电动机控制系统,对电动机的过负荷、短路、超长时间启动、堵转、不平衡、接地、欠压、过压、工艺联锁等故障引起的危害予以保护,并集合全面的三相电量测量/显示、数字输入/输出与网络通讯于一身。每个装置具有多种综合电力参数测量功能,既可单独作为电测仪表使用,亦可作为电力综合自动化监控系统之前端,可实现测量、监视、保护、控制等综合功能,通过带隔离栅的模拟量输出端口和DCS系统进行轻松接入。通过其标准的RS-485通讯接口及双绞线网络与监控系统通信,轻松实现数据的远方管理及"四遥"功能。

2、PDM810MRC产品型号及应用范围

产品型号	适用范围
PDM810MRC:综合型电动机保护测控装置	重要电动机的综合保护

SCT选型

SCT型号	电机额定电流	电机额定功率	SCT型号	电机额定电流	电机额定功率
SCT5	5A及以下	2.2KW以下	SCT150	150A及以下	55KW~75KW
SCT10	10A及以下	3KW~4KW	SCT200	200A及以下	90KW
SCT30	30A及以下	5.5KW~15KW	SCT300	300A及以下	110KW~150KW
SCT100	100A及以下	18KW~45KW	SCT400	400A及以下	150KW以上

3、PDM810MRC产品主要特点

- PDM810MRC智能电动机保护控制装置是针对低压电动机控制系统设计,超小外型尺寸,适用于GCK、GCS、GGD、MNS等各种抽出式(包括1/4抽屉)、固定式及混合式的柜型安装。具有方便安装、布局合理、维护方便、节约电缆、安全可靠等多种优点;
- 全面采用嵌入式 SOC (System On Chip 片上系统)设计、32 位 DSP(Digital Signal Processing 数字信号处理 技术和冗余现场总线技术,交流采样采用优化全波 FFT (Fast Fourier Transform 快速傅立叶变换)技术,软件 采用模块化、高抗干扰设计;
- 装置电源、通讯状态、电机运行状态、告警均有 LED 指示,方便检测、维护系统;
- 具有多达8路的开入量采集,和4路开出量的控制;
- 具有短路保护、定时限、反时限保护、堵转、启动时间超长、不平衡、过欠压保护等多种保护功能,全面保护 电动机安全运行;
- 可与 SIEMENS、SCHNEIDER、GE、AB 等多种品牌的 PLC 联网;同时可与 KINGVIEW、FIX、WinCC、Intouch 等软件组网:
- 配合可拆分式、小型化的中文液晶操作/显示终端,可直接监视设备运行状态、运行参数,以及修改保护定值和 参数。

4、PDM810MRC产品功能配置表

-L-A	型号	PDM810MRC	
功能	7		
	短路保护	<u> </u>	
	堵转保护	√ 	
	定时限过流保护	√	
	反时限过流保护	√ 	
保	欠载保护	√ 	
护	过载保护	√	
	缺相/不平衡保护	√ 	
功	零序过流保护	选配	
能	TE时间保护	√	
	欠压保护	√	
	过压保护	√	
	工艺连联锁	\checkmark	
	晃电再启动	选配	
	溢出故障	√	
	电压测量	三相	
NEL J	电流测量	三相	
测	功率测量	总和	
量	功率因素	总和	
功 能	频率测量	A相	
担心	电能测量	总和	
	漏电电流测量		
1.5.	开关遥控	2路	
控	保护跳闸输出	 1路	
制	报警接点输出	1路	
开入	量输入	8路	
	以量输出4~20mA	最多可选配2路	
	直接启动	√	
启	双向启动	$\sqrt{}$	
动	双速启动	\checkmark	
方	星三角启动	\checkmark	
式	其他启动	√	
11	保护控制启动	√	
事	保护事件记录	√	
件	系统时钟	√	
通	VV-VFH1 k1	v	
這信	标准RS-485接口	\checkmark	
显示	三模 块	选配液晶显示	

5、PDM810MRC产品技术参数表

工作环境	
正常温度	-10℃~50℃
极限温度	-20°C∼60°C
存储温度	-40°C∼85°C
相对湿度	5%~90%
大气压力	60kPa∼110kPa

工作电源	
电压范围	交直流60V~265V
频率范围	40Hz∼60Hz
正常功耗	<4W
输入保险	1A
隔离耐压	2000V

交流电流回路		
额定电流	5A/1A	
功率消耗	<0.3VA	
测量范围	保护电流0~20In	
测量精度	测量电流0.5级	
	保护电流3级	
过载能力	2In连续工作	
	10In允许工作10s	
	40In允许工作1s	
隔离耐压	2000V	

交流电压回路		
额定电压	380V/100V	
功率消耗	<0. 3VA	
测量范围	0∼1.2Un	
测量精度	0.5级	
过载能力	1. 2Un连续工作	
隔离耐压	2000V	

开关量输入回路	
输入方式	干接点输入
电源方式	装置内部提供电源
隔离耐压	2000V

继电器输出回路		
分断电压	10A/250VAC 10A/30VDC	
隔离耐压	2000V	

绝缘性能	
绝缘电阻	各电气回路之间>20MΩ
	各电气回路对地>20MΩ
工频耐压	各电气回路之间2KV/50Hz 1Min
	各电气回路对地2KV/50Hz 1Min
冲击电压	各电气回路之间1.2/50 μs, 5000V
	各电气回路对地1.2/50 µs, 5000V
耐湿热	遵循GB/T 2423.9-2001

电磁兼容	
静电放电	符合GB/T 14598.14-1998 严酷等级IV级
射频电磁场	符合GB/T 14598.9-2002 严酷等级III级
快速瞬变	符合GB/T 14598.10-1996 严酷等级IV级
脉冲群	符合GB/T 14598.13−1998 严酷等级Ⅲ级
浪涌冲击	符合GB/T 17626.5-1999 严酷等级III级

6、PDM810MRC产品安装

电源过流保护

A WARNING

电源过流保护

建议在装置电源处加入1A的保险丝或空开。

浪涌保护

A WARN ING

浪涌保护

如果在电力质量比较差的地区使用本产品,建议在电源 回路安装浪涌抑止保护器以防雷击。

盘面固定方法

电动机保护装置的安装简单、易学,在增加了强大功能的同时,工程量却大量减少; PDM810MRC 安装方式:导轨式,螺丝固定式

PDM810MRC 安装尺寸及方法

- 在您的配电盘上,选择合适的地方攻四个螺钉安装孔
- 取出电动机保护装置,用螺钉将装置固定在配电盘上
- 或者在配电盘上安装燕尾导轨,将装置卡放在燕尾导轨上
- 拆分安装时,将装置本体导轨式或螺丝固定式安装在抽屉柜内
- 在抽屉柜门板上开两个螺丝孔,一个 DB9 串口过孔,将显示模块安装在柜门板上

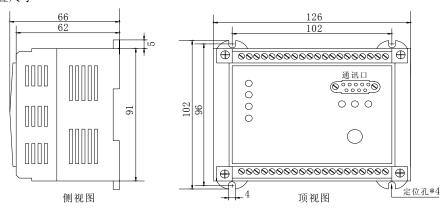
PDM810MRC 螺钉安装方式

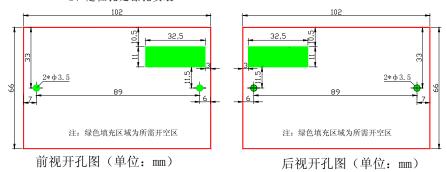
CAUTION

建议:

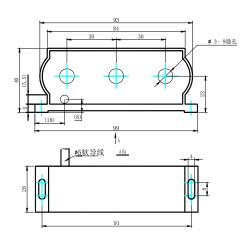
避免与产生强电磁干扰的系统 接近

PDM810MRC导轨安装方式

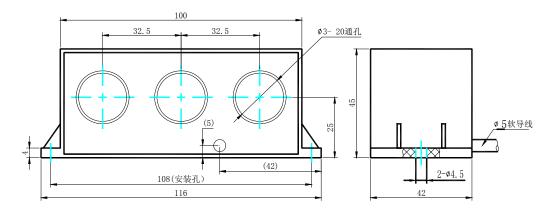



PDM810MRC拆分式安装方式

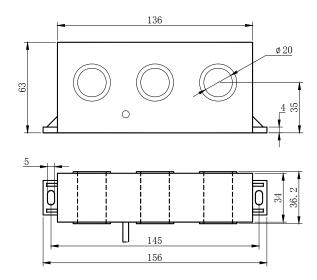
PDM810MRC装置尺寸

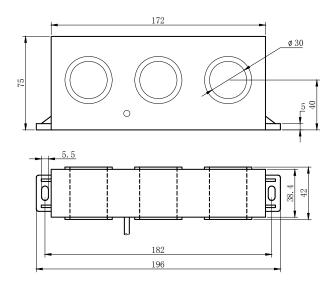


安装方式: 1、安装于35mm标准导轨 2、定位孔处镙孔安装


备注: 1、定位孔处采用产品专配镙孔安装,随机附带。 SCT安装尺寸

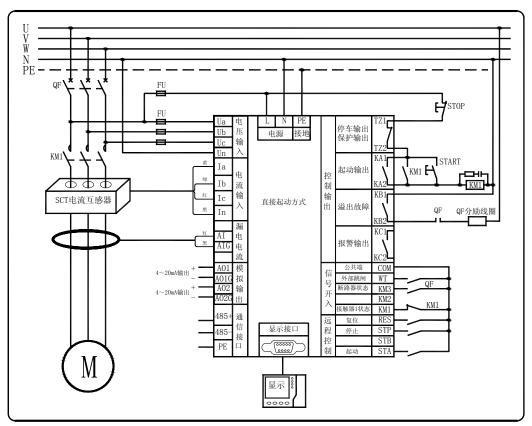
SCT5, SCT10




SCT30, SCT100

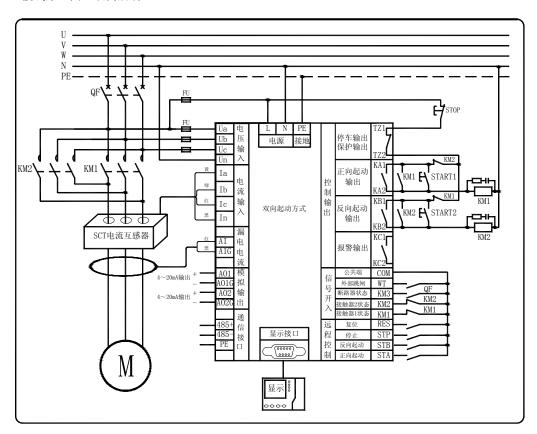
SCT150

SCT200, SCT300, SCT400

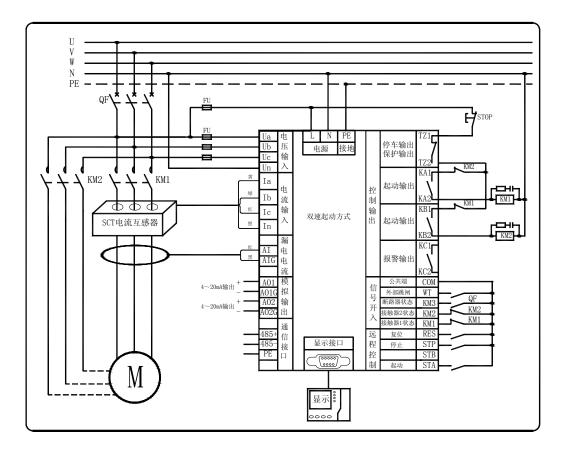


7、PDM810MRC 端子介绍

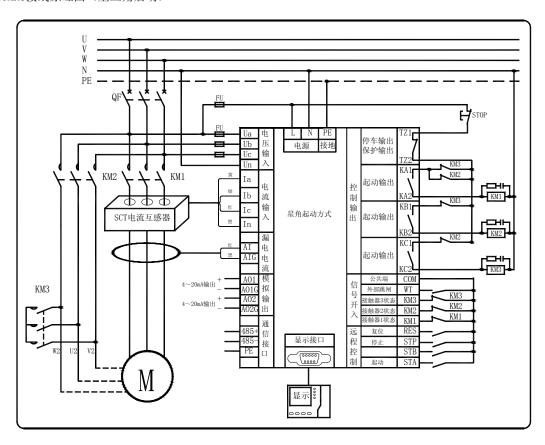
0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COM	STA	STB	STP	RES	KM1	KM2	КМЗ	WT	TZ1	TZ2	KA1	KA2	KB1	КВ2	KC1	KC2	485+	485-	PE
					•														
Ua	Ub	Üc	Un	In	Ia		Ib		Ic	AI	AIG		A01G	A01	A02G	A02	L/+	N/-	PE


8、PDM810MRC产品接线原理图

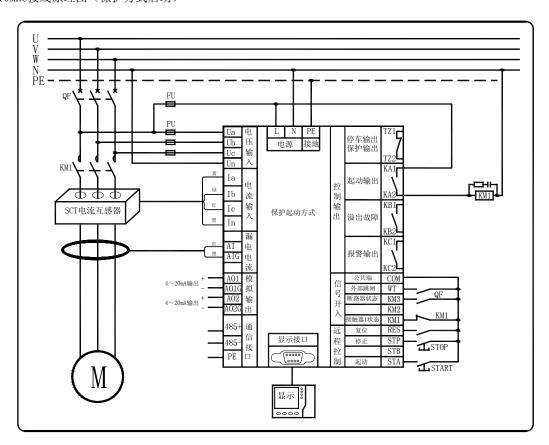
PDM810MRC接线原理图(直接启动)



PDM810MRC接线原理图(双向启动)



PDM810MRC接线原理图(双速启动)



PDM810MRC接线原理图(星三角启动)

PDM810MRC接线原理图(保护方式启动)

9、PDM810MRC产品施工注意事项

电压输入

输入的电压应不高于产品的额定输入电压的 120%(100V 或 380V), 否则应考虑使用 PT。

CAUTION

建议:

在电压输入端安装1A的保险丝,便于拆装。

电流输入

- 1、根据电机额定电流的大小选择不同的 SCT;
- 2、要确保 SCT 的输出线**黄、绿、红、黑**分别接在主体装置的 **Ia, Ib, Ic, In**;

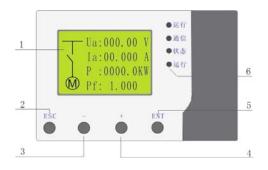
CAUTION

安装CT:

建议

根据SCT上指明的方向穿过电缆

通信接线


电动机保护装置提供串行异步半双工 RS-485 通信接口,采用 MODBUS-RTU 协议,各种数据信息均可在通信线路上传送。在一条通信总线上可以同时连接多达 128 个电动机保护装置,每个电动机保护装置均可设定其通信地址。

CAUTION

通信连接应使用带铜网的屏蔽双绞线,线径不小于 0.5mm²。布线时应使通信线远离强电电缆或其它强电 场环境。

10、PDM810MRC 显示面板操作

PDM810MRC 面板图示

PDM810 系列面板

编号	名称	说明
1	电量数值指示区	显示电压、电流、功率等及开入量状态
2	ESC	取消(返回)键或电动机正转启动键
3	-	上移(减)键或电动机反转启动键
4	+	下移(加)键或电动机停车键
5	ENT	选择(确认)键或复位键
6	指示灯	指示相关状态,详见下文

复式按键说明:

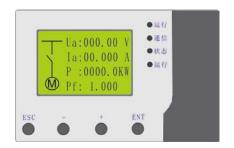
ESC: 电动机正转启动操作,将参数设置中的"面板控制"设置为"ON",长按 ESC 键 3 秒,可发出正转启动命令。

- : 电动机反转启动操作,将参数设置中的"面板控制"设置为"ON",长按-键3秒,可发出反转启动命令。

+ : 电动机停车操作,将参数设置中的"面板控制"设置为"0N",长按+键3秒,可发出停车命令。

ENT: 复位操作,将参数设置中的"面板控制"设置为"ON",长按 ENT 键 3 秒,可复归保护。

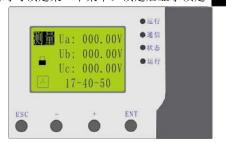
本体装置指示



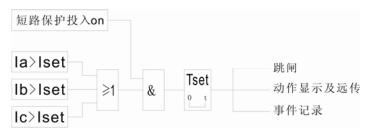
注: 故障类型为 16 进制编码,表示电机运行过程出现故障的原因,通信端口主要用于和显示终端通信以及上位机调试软件调试,装置状态显示装置状态和工况,复归按钮用于装置复归。

系统上电

依照说明正确接线后,接通工作电源,显示屏显示与主装置通信建立连接,连接后显示系统图、母线电压、线路电流、有功功率以及功率因素显示:


- 显示母线电压
- 显示电动机运行状态
- 运行指示灯红绿闪烁,表示装置工作中
- 通信灯在有通信时闪烁
- 状态指示灯显示当前电动机的运行状态,红灯为正转运行,绿灯为反转运行,灯熄灭为停车状态
- 告警灯在保护动作后显示红灯,复归后灯熄灭

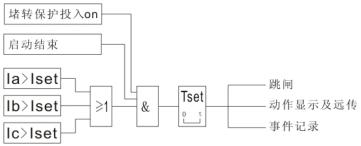
使用取消/上移/下移/确认按键进入测控模式,使用上移/下移可切换显示内容。


- 如果显示处于菜单显示模式下,按取消键返回到数值显示模式
- 在数值模式时按下取消键时可锁定某一个菜单。锁定后显示锁定 🖳 图标

11、PDM810MRC产品保护功能

短路保护

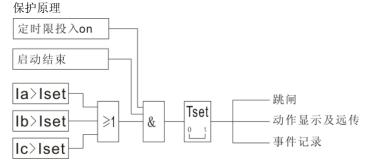
保护原理



Iset 为短路电流整定值, Tset 为保护延时整定值。

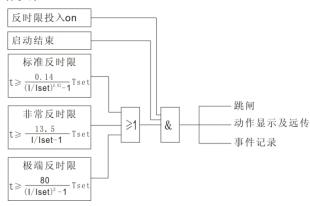
堵转保护

保护原理



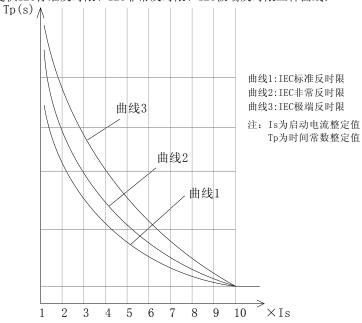
Iset 为堵转电流整定值, Tset 为定时限延时整定值。

定时限保护



Iset 为定时限电流整定值, Tset 为定时限延时整定值。

反时限保护


保护原理

Iset 为反时限启动电流整定值, Tset 为时间常数整定值。

反时限过负荷保护功能,提供IEC标准反时限、IEC非常反时限、IEC极端反时限三种曲线:

IEC 标准反时限

IEC 非常反时限

IEC 极端反时限

$$Td = \frac{0.14}{\left(\frac{I}{Is}\right)^{0.02} - 1} \times \frac{Tp}{2.97} \qquad Td = \frac{13.5}{\frac{I}{Is} - 1} \times \frac{Tp}{1.5} \qquad Td = \frac{80}{\left(\frac{I}{Is}\right)^2 - 1} \times \frac{Tp}{0.808}$$

$$Td = \frac{13.5}{\frac{I}{T_s} - 1} \times \frac{Tp}{1.5}$$

$$Td = \frac{80}{(\frac{I}{T_s})^2 - 1} \times \frac{Tp}{0.808}$$

举例1: 选择曲线IEC标准反时限,时间常数Tp=1.3

In=2Is : Td为3.38×1.3=4.394s In=5Is: Td为1.44×1.3=1.872s

举例2: 选择曲线IEC标准反时限, 2Is动作时间为16s, 求时间常数K

根据IEC标准反时限查2Is, 所得A=3.38

Tp=16/3.38=4.73, 时间常数定值取4.7

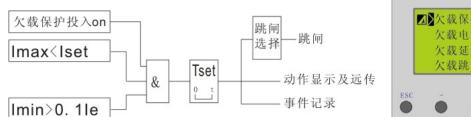
IEC标准反时限系数表(A曲线):

Is倍数	系数								
10.0	1.00	8.0	1. 11	6. 0	1. 29	4.0	1.68	2. 0	3. 38
9.8	1.01	7.8	1.12	5.8	1. 32	3.8	1.74	1.8	3. 99
9.6	1.02	7.6	1. 14	5. 6	1. 34	3. 6	1.82	1.6	4. 99
9.4	1.03	7.4	1. 15	5. 4	1. 37	3. 4	1.90	1.4	6. 98
9.2	1.04	7.2	1. 17	5. 2	1.41	3. 2	2.00	1.2	12. 90
9.0	1.05	7. 0	1. 19	5. 0	1. 44	3. 0	2. 12	1. 1	24. 7
8.8	1.06	6.8	1.21	4.8	1.48	2.8	2. 27		
8.6	1.07	6.6	1.23	4.6	1. 52	2.6	2.44		
8.4	1.08	6. 4	1. 25	4. 4	1. 57	2. 4	2.67		
8.2	1. 10	6. 2	1. 27	4. 2	1.62	2. 2	2.97		

IEC非常反时限系数表(B曲线):

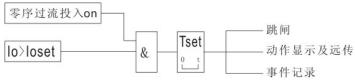
Is倍数	系数								
10.0	1.00	8.0	1. 29	6. 0	1.80	4.0	3.00	2.0	9.00
9.8	1.02	7.8	1.32	5.8	1.88	3.8	3. 21	1.8	11. 25
9.6	1.05	7.6	1. 36	5. 6	1.96	3. 6	3.46	1.6	15.00
9.4	1. 07	7. 4	1.41	5. 4	2.05	3. 4	3. 75	1.4	22.50
9. 2	1. 10	7. 2	1.45	5. 2	2. 14	3. 2	4.09	1.2	45.00
9.0	1. 12	7. 0	1.50	5. 0	2.25	3. 0	4.50	1. 1	90.00
8.8	1. 15	6.8	1.55	4.8	2. 37	2.8	5.00		
8.6	1. 18	6.6	1.61	4.6	2.50	2.6	5.62		
8.4	1. 22	6. 4	1. 67	4. 4	2.65	2. 4	6. 43		
8.2	1. 25	6.2	1. 73	4. 2	2.81	2. 2	7. 50		

IEC极端反时限系数表(C曲线):


Is倍数	系数	Is倍数	系数	Is倍数	系数	Is倍数	系数	Is倍数	系数
10.0	1.00	8.0	1. 57	6.0	2.83	4.0	6. 60	2.0	33.00
9.8	1.04	7.8	1.65	5.8	3. 03	3.8	7. 37	1.8	44. 20
9.6	1.09	7. 6	1.74	5. 6	3. 26	3. 6	8. 28	1.6	63. 47
9.4	1. 13	7.4	1.84	5. 4	3. 52	3. 4	9. 38	1.4	103. 14
9.2	1.18	7. 2	1.95	5. 2	3.80	3. 2	10.72	1.2	225.00
9.0	1.24	7. 0	2.06	5. 0	4. 13	3. 0	12.38	1. 1	471.43
8.8	1.30	6.8	2. 19	4.8	4. 49	2.8	14. 48		
8.6	1.36	6.6	2.33	4.6	4. 91	2.6	17. 19		
8.4	1.42	6.4	2.48	4.4	5. 39	2.4	20.80		
8.2	1.49	6. 2	2.64	4.2	5. 95	2. 2	25. 78		

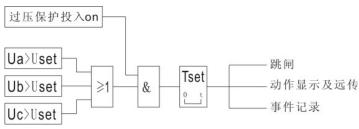
10倍Is以上电流系数均为1

欠载保护


保护原理

Imax为三相中最大电流值, Imin为三相中最小电流值, Iset为保护整定值, 欠载保护可选择跳闸或只报警。 零序过流保护(漏电保护)

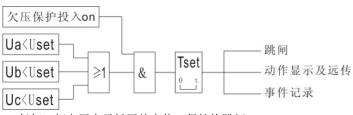
保护原理



Io为零序电流值, Ioset为保护整定值。

过压保护

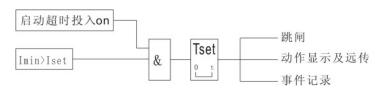
保护原理



任何一相电压大于过压整定值, 保护均跳闸。

欠压保护

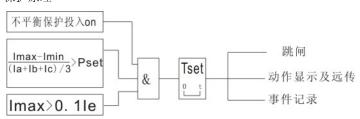
保护原理



任何一相电压小于低压整定值, 保护均跳闸。

启动超时保护

保护原理



正常的启动完成后电机的运行电流将在额定值的附近,而启动时间过长(一般因机械原因),则在启动时间之后电动机的运行电流仍保持较大的值,当整定的启动时间到达后,电动机的电流仍大于整定值时本保护动作。

不平衡保护

保护原理

Imax为三相电流最大值, Imin为三相电流最小值, Pset为不平衡率整定值, Ie为电动机额定电流。

工艺联锁

保护原理

过热保护

过热保护动作判据为:

$$t = \frac{\tau}{(I_1/I_n)^2 - 1.05^2}$$

式中: t: 保护的动作时间 (s); τ : 电动机的时间常数 (s), 对应于电动机过热(过负荷)的承受能力; I_1 : 电动机实际运行电流 (A); I_n : 装置的额定电流(电动机实际运行额定电流反应到CT二次测的值); 在非正常运行情况下,本装置不断计算电动机的积累过热量: $H=\Sigma[(I1/In)^2--1.05^2]\triangle t$ $\triangle t$: 两计算点之间的间隔时间;H: 等值单位过热量累加时间 (s),表征电动机的过热程度。 一般情况下过热保护动作条件为 $H \geqslant \tau$ 。

晃电再启动

功能叙述:

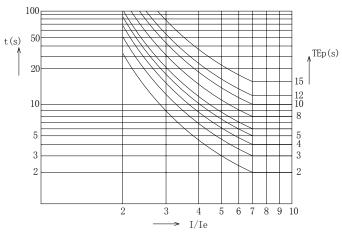
对于要求具有带欠压重启动(或"晃电"再启动)的MCC系统,PDM810MRC可以设定不同的再启动时间,一旦电源故障后,系统在规定的时间内又恢复电源时;可根据失电前电机的运行状态,使MCC系统有选择地实现分批再启动。

当电动机三相电压出现"晃电"时,并且母线电压降至晃电电压设定值,装置内部定时器开始计时(时间可根据工艺要求和设备负载特性可设定);若在设定时间内母线电压恢复至恢复电压设定值,装置根据失压前记忆的电机运行状态(失压前电机为运行状态)及设定的时序(再启动延时时间),分别控制相应的输出继电器动作,实现该台电动机的分批再启动控制。

功能原理

电动机正常运行中,系统晃电,造成接触器脱扣,装置检测到系统欠压并低于晃电电压及接触器开入信号变化,装置开始计时,在设定的晃电时间内,系统电压恢复到装置设定的恢复电压值,经过再起延时后,发出合接触器命令,启动该电机。由于可设定再起延时,可实现电动机的分批再起。如果在晃电时间内,电压没有恢复,则晃电再起动功能退出,电压恢复后亦不能再起动。

TE时间保护(适用于增安型电动机)


保护原理

提供堵转时在TE时间内断开电动机电压的热过载保护,在电动机启动结束后才投入。

注: "TE 保护"动作时间=TE 设为1.0s 时的动作时间×TE 实际设定值。反时限堵转延时TE 设定为5.0s 时,按起动电流比I/Ie 确定的保护动作时间与IEC79-7、GB3836.3-2000 标准符合。在用于增安型电动机TE 保护时,其反时限过载保护可参照上述特性曲线设定。考虑到一定的可靠系数,反时限曲线设定应比标准下移15%左右。

●場行

TE时间保护特性表:

tE 设定 IA/IN	1.0 (s)	4.0 (s)	4.3 (s)	4.6 (s)	5.0 (s)	5.5 (s)	6.0 (s)	15.0(s)
3. 00	4. 00	16.00	17. 20	18. 40	20.00	22. 00	24. 00	60.00
3. 20	3. 48	13. 91	14. 96	16.00	17. 39	19. 13	20.87	52. 17
3. 40	3. 08	12. 31	13. 23	14. 15	15. 38	16. 92	18. 46	46. 15
3. 60	2. 76	11.03	11.86	12.69	13. 79	15. 17	16. 55	41. 38
3. 80	2. 50	10.00	10. 75	11.50	12. 50	13. 75	15. 00	37. 50
4. 00	2. 29	9. 14	9. 83	10. 51	11. 43	12. 57	13. 71	34. 29
4. 20	2. 11	8. 42	9. 05	9. 68	10. 53	11. 58	12. 63	31. 58
4. 40	1. 95	7. 80	8. 39	8. 98	9. 76	10. 73	11. 71	29. 27
4. 60	1.82	7. 27	7. 82	8. 36	9. 09	10.00	10. 91	27. 27
4. 80	1.70	6.81	7. 32	7. 83	8. 51	9. 36	10. 21	25. 53
5. 00	1.60	6. 40	6.88	7. 36	8. 00	8. 80	9. 60	24. 00
5. 20	1. 51	6. 04	6. 49	6. 94	7. 55	8. 30	9. 06	22. 64
5. 40	1. 43	5. 71	6. 14	6. 57	7. 14	7. 86	8. 57	21. 43

5. 60	1. 36	5. 42	5. 83	6. 24	6. 78	7. 46	8. 14	20. 34
5. 80	1. 29	5. 16	5. 55	5. 94	6. 45	7. 10	7. 74	19. 35
6.00	1. 23	4. 92	5. 29	5. 66	6. 00	6. 77	7. 38	18. 46
6. 20	1. 18	4. 71	5. 06	5. 41	5. 88	6. 47	7. 06	17.65
6. 40	1. 13	4. 51	4. 85	5. 18	5. 63	6. 20	6. 76	16. 90
6. 60	1. 08	4. 32	4. 65	4. 97	5. 41	5. 95	6. 49	16. 22
6. 80	1. 04	4. 16	4. 47	4. 78	5. 19	5. 71	6. 23	15. 58
7. 00	1.00	4. 00	4. 30	4. 60	5. 00	5. 50	6.00	15. 00
8.00	1.00	4. 00	4. 30	4. 60	5. 00	5. 50	6.00	15. 00

12、PDM810MRC 产品参数设置

额定电流

电动机的额定电流,根据 ct 变比,输入二次值,起动超时,TE 时间保护逻辑根据额定电流大小做判断,需要设置。举例:110KW 电动机,额定电流为 207A。选用 SCT200,变比为 40,二次额定电流为 207/40=5.175A,额定电流设置为 5.18A。

起动时间

电动机从起动到正常工作的时间,起动超时保护需要根据这个参数做判断。设置时根据电动机的实际情况设置。出厂设置为 6s。

起动方式

电动机的起动模式设置,可以设置为直接起动,可逆起动,双向起动,星三角起动等,根据电动机的实际情况设置。

切换延时

双向起动, 星三角起动转换的延时。

面板控制

通过显示屏起动,设置为 on 时,可通过显示屏起动电动机。常按 ESC 键 3s, 正转起动;常按-键,反转起动;常按+键 3s, 电动机停车;常按 ENT 键 3s, 装置信号复归。

CT 变比

根据实际配置的 CT 或 SCT 设置。

A01 满度

模拟量输出1的满度值,对应20mA。

A01 输出

第一路模拟量输出的类型,可设置为电压电流或功率。

A02 输出

第二路模拟量输出的类型,可设置为电压电流或功率。

A02 满度

模拟量输出 2 的满度值,对应 20mA。

通信地址

RS-485 通信时的装置子地址。

通信速率

RS-485 通信的速率。

电度清零

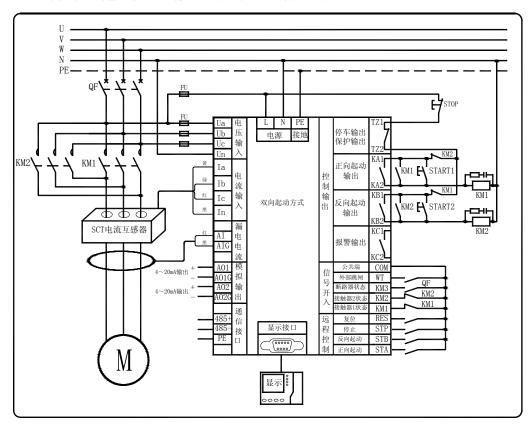
将电机的累加电能清零处理

出口方式

跳闸输出为脉冲方式还是为电平方式,脉冲方式时,跳闸后继电器自动返回。电平方式时,跳闸后继电器 保持。

溢出故障

短路保护时故障电流过大,接触器如果不具备切断故障电流情况下,开启溢出故障,输出一个接点,通过 跳开断路器来实现故障切除。(注:断路器需带电操机构)


13、电动机控制功能

- 启动方式: 直接启动、双向启动、双速启动、星-三角启动、自耦变压器降压启动、软启动等。
- 启动时间:可独立设定,启动时间内,具有短路/缺相/零序保护/过欠压保护,堵转,定时限,反时 限保护自动闭锁,电机启动结束后,堵转,定时限,反时限保护自动投入。满足星-三角 启动、自耦变压器降压启动等启动时间。
- 再启动控制: 晃电电动机分批再启动控制功能。
- 起停操作: 电动机启动、停止、复归等具有就地操作、远方操作和通过通讯网络遥控操作等多种操作功能。
- 保护控制: PDM810MRC的继电器输出为电平方式输出方式,继电器跳闸输出为常闭接点,串联接在交流接触器的起停控制回路中。
- 复归方式: PDM810MRC保护跳闸并停止后,具有故障指示、如需再次操作则需先复归。复归有多种方式:① 装置有复归输入端,可进行远程复归;② 可通过通讯口实现遥控复归;③ 可通过显示面板复归。
- 安全特性: PDM810系列采用硬件模块设计结构, 电动机的控制、保护在装置内部独立处理, 与现场总线控制无关。装置一旦远程通讯失败, 仍然可以通过装置, 由开关柜面板操作按钮控制电动机的运行状态; 因此系统控制的安全性极高。

14、电动机操作原理

智能电动机控制装置为例,采用双向启动方式;QF为断路器;KM1、KM2分别为电动机正、反转启动停止操作用接触器;图中其余各种输入按钮,均安装于抽屉柜或控制箱的面板上;

● 一次回路: 主回路U、V、W进入抽屉柜,经过断路器QF,与控制接触器KM1、KM2(KM1为正转,KM2为 反转)连接,最后出电动机控制箱或抽屉与电机连接。

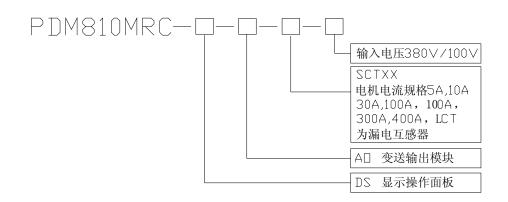
● 二次回路:

工作电源: L、N为PDM810MRC提供控制电源。特殊场合可由UPS或直流电源供电.

网络通信: "通讯接口"在组网时采用A类屏蔽双绞线连接,上位机可以是计算机、PLC、RTU或DCS 并按规定的通讯协议进行远程数据传输。

信号输入:

- 1、 交流电流: 电流回路经自带SCT互感器输入至装置。
- 2、 交流电压: 采用断路器QF出线直接输入,无须外加PT,建议在三相交流电压回路分别加入熔断器。
- 3、操作信号: 控制按钮的一端均接装置COM端,另一端分别接入装置相关信号端子。装置提供内部信号电源,信号接入均为干接点,共有"正转"、"反转"、"停止"、"复归"四个输入信号。
- 4、 状态信号: 其中"KM1"、"KM2"、"QF"分别为电动机的交流接触器及断路器运行状态信号; 用于电机运行状态指示及为上位机传输通讯数据(注意:为避免接触器/断路器的常开触点数量不足,以上状态信号都必须采用常闭触点输入,不能接错);"WT"为工艺联锁信号,用于电动机工艺联锁保护(根据需要可选)。


● 工作原理:

当装置上电时,首先通过装置内部光耦检测KM1、KM2接触器是否在释放状态,如果接线不正确,装置报警灯亮。当装置接收到"正转"启动命令时,其内部KM1继电器吸合,装置检测到KM1吸合,主回路导通,电机正转开始启动。停止时,装置内部KM1、KM2继电器均断开,KM1和KM2接触器释放,主回路断开、电机停止。

信号输入	注释	控制输出	注释	
STA	正转信号输入	KA	电机正转控制输出	
STB	反转信号输入	KB	电机反转控制输出	
STP	停止信号输入	KC	报警信号输出	
RES	复归信号输入	TZ	电机跳闸控制输出	
KM1	电机正转运行状态		分	
KM2	电机反转运行状态	注:信号输入为干接点输入		
KM3	断路器运行状态	输出为干接点输出 		
WT	工艺联锁信号输入			

15、PDM810MRC 产品选型

选型说明:

1、 PDM810MRC基本配置为

3U, 3I, 8DI, 4DO, RS485, 380V

举例如下:

1、 PDM810MRC-DS/2A0/SCT100/380V 综合型电动机保护,显示, 2路A0输出,380V,SCT100

注1: SCT及LCT电流互感器线缆长度标配为1.5米,最长可定制为3米。分体式安装时主机与显示模块之间通信电缆长度标配1.5米。

定值计算及 SCT 选择

SCT 选择

SCT型号	电动机功率	参数设置CT变比(出厂时已设置好)
SCT400	400A以下	80
SCT300	300A以下	60
SCT200	200A以下	40
SCT150	150A以下	30
SCT100	100A以下	20
SCT30	30A以下	6
SCT10	10A以下	2
SCT5	5A以下	1

1、定值整定说明:

例子 1: 110kw 电动机,额定电流 Ie=207A,选择 SCT300,CT 变比 60

短路保护 8Ie=1656A 折算到二次 1656/60=27.6A, 在短路保护内, 设置短路电流设置为 27.6A

堵转保护 5Ie=1035A 折算到二次 1035/60=17.25A,在堵转保护内,设置堵转电流为 17.3A(注:堵

转保护在电动机启动过程中关闭,启动后打开,因此在启动过程中不会造成堵转保护动作)

反时限过流 启动电流 1.1Ie=227.7A 折算到二次 227.7/60=3.795A, 在反时限过流内,设置启动电流 为 3.8A

其它保护依次计算,计算出一次定值后,根据CT变比计算出二次定值,作为保护定值输入。

2、电机启动时间设置

在装置的"参数设置"内请设置电动机"启动时间",根据电动机的实际情况设置,默认6S。

注: 电流保护的定值, 要计算基础上乘以可靠系数 1.2 (如为了提供灵敏度, 可乘以 1.1)