

ESP8266-S1 WiFi 模块 极致 / 开放 / 小巧 / 易用

规格书 版本 1.0 2016年9月

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

注意

由于产品版本升级或其他原因,本手册内容有可能变更。深圳市汇思锐科技有限公司保留在没有任何 通知或者提示的情况下对本手册的内容进行修改的权利。本手册仅作为使用指导,深圳市汇思锐科技有限 公司尽全力在本手册中提供准确的信息,但是深圳市汇思锐科技有限公司并不确保手册内容完全没有错误, 本手册中的所有陈述、信息和建议也不构成任何明示或暗示的担保。

发布说明

日期	版本	发布说明
2016.09	V1.0	首次发布

目录

1.	概述	. 4
2.	主要特性	. 4
	2.1 系统框图	. 4
	2.2 硬件参数	. 5
3.	引脚描述	. 6
4.	功能描述	. 8
	4.1 MCU	. 8
	4.2 存储	. 8
	4.2.1 内置 SRAM 与 ROM	. 8
	4.2.2 SPI Flash	. 8
	4.3 接口定义及描述	. 8
5.	电气特性	. 9
	5.1 功耗	. 9
	5.2 RF 特性	10
	5.3 数字端口特征	11
	5.4 最大额定值	11
	5.5 倾斜升温	11
6.	原理图	12
7.	最小系统	12
8.	推荐 PCB 设计	13
9.	外围走线建议	14
10). 产品试用	15
11	推荐使用	15

1. 概述

ESP8266-S1 WiFi 模块是由深圳市汇思锐科技有限公司开发的、低功耗高性价比的嵌入式无线网络控制模块。可满足智能电网、楼宇自动化、安防、智能家居、远程医疗等物联网应用的需求。

该模块核心处理器 ESP8266 在较小尺寸封装中集成了业界领先的 Tensilica L106 超低功耗 32 位微型 MCU,带有 16 位精简模式,主频支持 80 MHz 和 160 MHz,支持 RTOS,集成 Wi-Fi MAC/ BB/RF/PA/LNA,板载天线。

该模块支持标准的 IEEE802.11 b/g/n 协议, 完整的 TCP/IP 协议栈。用户可以使用该模块为现有的设备添加联网功能,也可以构建独立的网络控制器。

图-1 对比图 (立体图)

2. 主要特性

2.1 系统框图

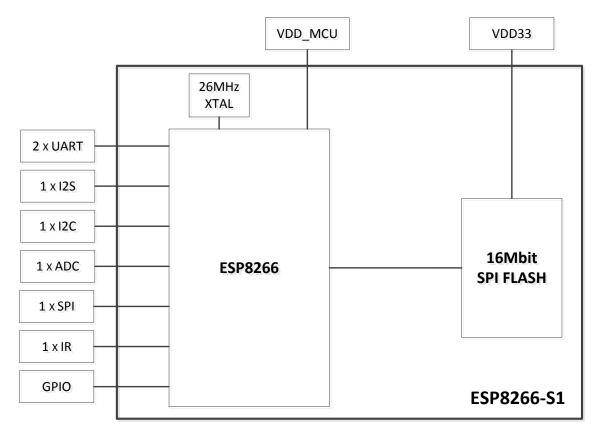


图-2 系统框图

2.2 硬件参数

- 工作电压: 3.3V (3.0~3.6V)
- 工作环境温度: -40 85°C
- CPU Tensilica L106
 - o RAM 50KB (可用)
 - o Flash 16Mbit
- 系统
 - o 802.11 b/g/n
 - o 频率范围 2.4 GHz ~ 2.5 GHz(2400 M ~ 2483.5 M)
 - 内置 Tensilica L106 超低功耗 32 位微型 MCU,带有 16 位精简模式,主频支持 80 MHz 和 160 MHz,支持 RTOS
 - o WIFI @2.4 GHz, 支持 WPA/WPA2 安全模式
 - o 支持 UART、I2C、GPIO、PWM、SDIO、SPI、ADC、PWM、IR
 - o 内置 10 bit 高精度 ADC
 - o 支持 TCP、UDP、HTTP、FTP
 - o 内置 TR 开关、balun、LNA、功率放大器和匹配网络
 - o 内置 PLL、稳压器和电源管理组件 802.11b 模式下+20 dBm 的输出功率
 - 平均工作电流 80mA,深度睡眠保持电流为 20uA,关断电流小于 5uA
 - o 可以兼作应用处理器 SDIO 2.0、 SPI、 UART
 - o 2ms 之内唤醒、连接并传递数据包
 - o 待机状态消耗功率小于 1.0mW (DTIM3)
 - o 支持本地串口烧录、云端升级、主机下载烧录
 - o 支持 Station / SoftAP / SoftAP + Station 无线网络模式
 - o 超小尺寸模组 18.6mm * 15.0mm * 3.05mm

3. 引脚描述

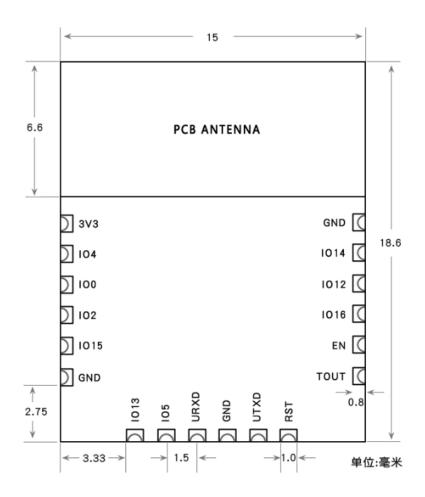


图-3管脚图(正视图)

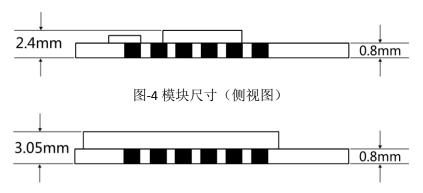


图-5 模块尺寸-屏蔽罩(侧视图)

深圳市汇思锐科技有限公司 T: 0755-23596457

表-1 引脚定义及描述

引脚	名称	描述
1	VCC	3.3V 供电(VDD) 注意:外部供电电源的最大输出电流建议在 500mA 以上;
2	104	GPIO4
3	100	GPIOO UART 下载:建议经过 1K 电阻拉低,可直接接地,但不推荐; FLASH 启动:悬空或外部拉高;
4	102	GPIO2; UART1_TXD
5	IO15	GPIO15; MIDO; HSPICS; UARTO_RTS 模块正常工作: 建议经过 1KΩ 电阻拉低,可直接接地,但不推荐;
6	GND	接地
7	IO13	GPIO13; HSPI_MOSI; UARTO_CTS
8	105	GPIO5
9	URXD	UARTO_RXD,UART 下载的接收端;GPIO3
10	GND	接地
11	UTXD	UARTO_TXD,UART 下载的发送端,悬空或外部拉高;GPIO1
12	RST	复位模组
13	TOUT	检测芯片 VDD3P3 电源电压或 TOUT 脚输入电压(二者不可同时使用)
14	EN	芯片使能端 高电平:有效,模块正常工作(建议经 10KΩ 电阻拉高); 低电平:芯片关闭,电流很小;
15	IO16	GPIO16;接到 RST 管脚时可做 deep sleep 的唤醒
16	IO12	GPIO12; HSPI_MISO
17	IO14	GPIO14; HSPI_CLK
18	GND	接地

4. 功能描述

4.1 MCU

ESP8266EX 内置 Tensilica L106 超低功耗 32 位微型 MCU,带有 16 位精简模式,主频支持 80MHz 和 160MHz,支持 RTOS。目前 WiFi 协议栈只用了 20%的处理能力,其余可以用来做应用开发。MCU 可通过以下接口和芯片其他部分协同工作:

- 连接存储控制器、也可以用来访问外界 Flash 的编码 RAM/ROM 接口(iBus);
- 连接存储控制器的数据 RAM 接口(dBus);
- 访问控制器的 AHB 接口;

4.2 存储

4.2.1 内置 SRAM 与 ROM

基于 Demo SDK 的使用 SRAM 情况,用户可用剩余 SRAM 空间为:

- RAM < 50 kB(Station 模式下,连上路由后,Heap + Data 区大致可有 50kB 左右)。
- 目前 ESP8266EX 片上没有可编程 ROM,用户程序存放在 SPI Flash 中。

4.2.2 SPI Flash

- ESP8266EX 芯片支持使用 SPI 接口的外置 FLASH, 理论最大支持 16MB 的 SPI Flash。
- ESP8266-S1 模块配置了 16Mbit 的 SPI Flash,可满足一般客户的使用需求。

4.3 接口定义及描述

表-2接口定义及描述

接口	引脚	描述
SPI 接口	IO12(MISO),IO13(MOSI), IO14(CLK),IO15(CS)	可以作为主机读写 SPI 从设备,也可以作为从机与外部单片机通信。在 overlap 模式下,可以与 Flash 共用 SPI 引脚,通过不同的 CS 进行切换
PWM 接口	IO12(R),IO15(G),IO13(B)	官方 demo 中提供 4 路 PWM (用户可扩展 8 路),可用来控制彩灯,蜂鸣器,继电器及电机等
IR 接口	IO14(IR_T), IO5(IR_R)	IR Remote Control 接口由软件实现,接口使用 NEC 编码及调制解调,采用 38KHz 的调制载波。
ADC 接口	TOUT	可用于检测 VDD3P3 (Pin3,Pin4) 电源电压和 TOUT (Pin6)的输入电压 (二者不可同时使用)。可用于传感器等应用
I2C 接口	IO14(SCL), IO2(SDA)	可外接传感器及显示屏等
UART 接口	UARTO: TXD(U0TXD),RXD(U0RXD) ,IO15(RTS),IO13(CTS)	可外接 UART 接口的设备 下载: U0TXD+U0RXD 或者 GPIO2+U0RXD 通信(UART0):U0TXD,U0RXD,MTDO(U0RTS),MTCK(U0CTS) Debug: UART1_TXD(GPIO2)可作为 debug 信息的打印

	UART1: IO2(TXD)	UARTO 在 ESP8266-S1 上电默认会输出 些打印信息。对此敏感的应用,可以使用 UART 的内部引脚交换功能,在初始化的时候,将 UOTXD,UORXD 分别与 UORTS;UOCTS 交换。硬件上将 MTDOMTCK 连接到对应的外部 MCU 的串口进口通信
	I2S 输入: IO12 (I2SI_DATA); IO13 (I2SI_BCK); IO14 (I2SI_WS);	- 主要用于音频采集、 处理和传输
I2S 接口	I2S 输出: IO15 (I2SO_BCK); IO3 (I2SO_DATA); IO2 (I2SO_WS);	一 土安川 」 目 炒 木 果 、 火 理 仲

5. 电气特性

5.1 功耗

表-3 功耗

模式	状态	典型值
	Modem Sleep	15mA
待机	Light Sleep	0.9mA
1단176	Deep Sleep	20uA
	Off	0.5uA
正常工作(平均)		80mA
传送 801.11b,CCK 11Mbps,Pout=+17 dBm		170mA
传送 801.11g,OFDM 54Mbps,Pout=+15 dBm		140mA
传送 801.11n,MCS7,Pout=+13 dBm		120mA
接收 801.11b,包长 1024 字节,-80 dBm		50mA
接收 801.11g,包长 1024 字节,-70 dBm		56mA
接收 801.11n,包长 1024 字节,-65 dBm		56mA

注①: Modem-Sleep 用于需要 CPU一直 处于工作状态 如 PWM 或 I2S 应用等。在保持 WiFi 连接时,如果没有数据传输,可根据 802.11 标准 (如 U-APSD),关闭 WiFi Modem 电路来省电。例如,在 DTIM3 时,每 sleep 300mS,醒来 3mS 接收 AP 的 Beacon 包等,则整体平均电流约 15mA。

注②: Light-Sleep 用于 CPU 可暂停的应用,如 WiFi 开关。在保持 WiFi 连接时,如果没有数据传输,可根据 802.11 标准 (如 U-APSD),关闭 WiFi Modem 电路并 暂停 CPU 来省电。例如,在 DTIM3 时,每 sleep 300 ms,醒来 3ms 接收 AP 的 Beacon 包等,则整体平均电流约 0.9 mA。

注③: Deep-Sleep 不需一直保持 WiFi 连接,很长时间才发送一次数据包的应用,如每 100 秒测量一次温度的传感器。例如,每 300 s 醒来后需 0.3s - 1s 连上 AP 发送数据,则整体平均电流可远小于 1 mA。

以上功耗数据是基于 3.3V 的电源、25°的环境温度下,并使用内部稳压器测得:

- 所有发射数据是基于 90% 的占空比,在持续发射的模式下测得。
- 所有测量数据是基于没有 SAW 滤波器的情况,在天线接口处测试。

5.2 RF 特性

表-4 射频参数

描述	最小值	典型值	最大值	单位
输入频率	2400	/	2483.5	V
输入阻抗值	/	50	/	ohm
输入反射值	/	/	-10	dB
PA 输出功率为 72.2 Mbps	15.5	16.5	17.5	dBm
11b 模式下 PA 输出功率	19.5	20.5	21.5	dBm
		接收灵敏度		
CCK , 1Mbps	/	-98	/	dBm
CCK , 11Mbps	/	-91	/	dBm
6Mbps (1/2 BPSK)	/	-93	/	dBm
54Mbps (3/4 64-QAM)	/	-75	/	dBm
HT20 , MCS7 (65Mbps , 72.2Mbps)	/	-72	/	dBm
领频抑制				
OFDM , 6Mbps	/	37	/	dB
OFDM , 54Mbps	/	21	/	dB
HT20 , MCS0	/	37	/	dB
HT20 , MCS7	/	20	/	dB

5.3 数字端口特征

表-5 数字端口特征

端口	典型值	最小值	最大值	单位
输入逻辑电平低	VIL	-0.3	0.25 VDD	V
输入逻辑电平高	VIH	0.75 VDD	VDD + 0.3	V
输出逻辑电平低	VOL	N	0.1 VDD	V
输出逻辑电平高	VOL	0.8 VDD	N	V

5.4 最大额定值

表-4 最大额定值

额定值	条件	值	单位
存储温度	/	-40 to 125	°C
最大焊接温度	/	260	°C
供电电压	IPC/JEDEC J-STD-020	+3.0 to +3.6	V

5.5 倾斜升温

表-6 倾斜升温

接口	描述
倾斜升温速率(Ts Max. 至 TL)	最大值 3°C/秒
预热 最小温度值 (Ts Min.) 典型温度值 (Ts Typ.) 最大温度值 (Ts Max.) 时间 (Ts)	150°C 175°C 200°C 60~180 秒
倾斜升温速率(TL至Tp)	最大值 3°C/秒
以上持续时间:温度(TL)/ 时间(TL)	270°C / 60~150 秒
温度峰值(Tp)	最高温度值 260 °C, 持续 10 秒
目标温度峰值(Tp 目标值)	260°C + 0 / -5°C
在持续峰值(Tp)5°C以内持续的时间	20~40 秒

倾斜降温速率(TsMax.至 TL)	最大值 6°C/秒
从 25°C 调制温度峰值所需时间 (t)	最长8分钟

6. 原理图

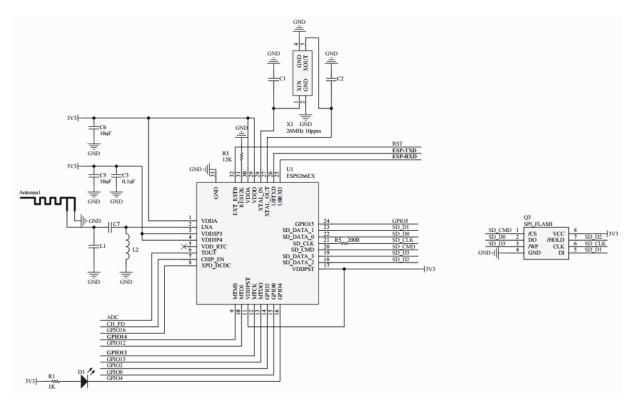


图-6 ESP8266-S1 原理图

7. 最小系统

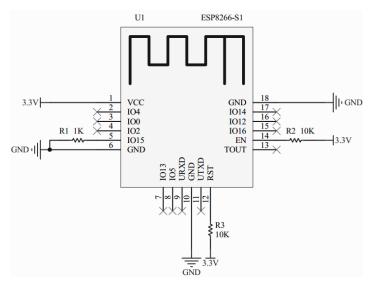
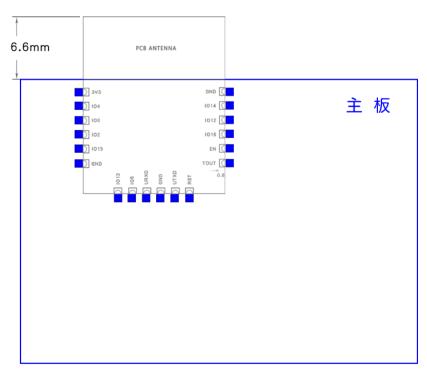
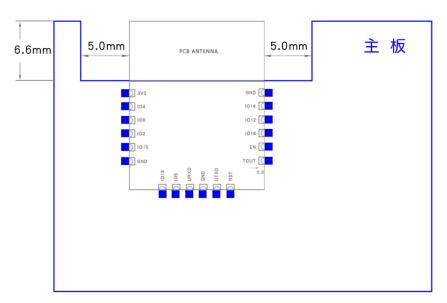


图-7 ESP8266-S1 最小系统图

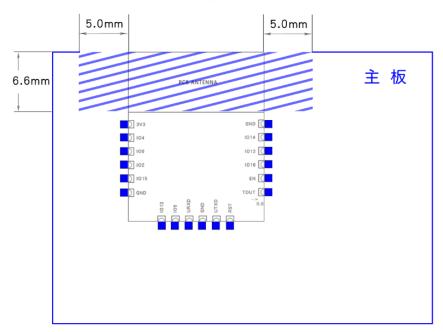

说明

- 1) 模块 IO 最大输出电流为 12 mA;
- 2) 模块电源典型值为 3.3 V DC;
- 3) 模块低电平复位有效;
- 4) 模块正常工作运行需要满足 IO15 拉低到 GND, EN 拉高到 3.3 V;
- 5) 模块固件在线升级需要在满足 3)的条件下, IOO 拉低, 并复位模块; 固件升级完成后, IOO 释放, 并复位模块;
- 6) 模块的 URXD 接 MCU 的 TXD, 模块的 UTXD 接 MCU 的 RXD;

8. 推荐 PCB 设计


ESP8266-S1 模组可以焊接到 PCB 板上。为了使终端产品获得最佳的射频性能,请注意根据本指南合理设计模组及天线在底板上的摆放位置。

建议将模组沿 PCB 板边放置,天线在板框外或者沿板边放置且下方挖空,参考方案 1 及方案 2;将 PCB 天线放在底板上也是允许的,只要天线下方不铺铜即可,参考方案 3。



方案 1: 天线在板框外

方案 2: 天线沿板边放置且下方挖空

方案 3: 天线沿板边放置且下方均不铺铜

9. 外围走线建议

ESP8266-S1 集成了高速 GPIO 和外设接口,这可能会产生严重的开关噪声。如果一些应用对于功耗和 EMI 特性要求较高,建议在数字 I/O 线上串联 10~100 欧姆的电阻。这样可以在开关电源时抑制过冲,并使信号变得平稳。串联电阻也能在一定程度上防止静电释放(ESD)。

10. 产品试用

• 淘宝店铺: 汇思锐

• 技术讨论 QQ 群: 214946279

• 技术支持邮箱: technical@hysiry.com

11. 推荐使用

使用本模块时推荐配套使用 ESP8266-Minitool,调试测试更加便捷,使用方法参考 "ESP8266-Minitool 使用说明书"。

