

Sample &

Buy

TXS0104E

Reference

Design

SCES651F - JUNE 2006-REVISED DECEMBER 2014

TXS0104E 4-Bit Bidirectional Voltage-Level Translator For Open-Drain and Push-Pull Applications

Technical

Documents

1 Features

- No Direction-Control Signal Needed
- Max Data Rates
 - 24 Mbps (Push Pull)
 - 2 Mbps (Open Drain)
- Available in the Texas Instruments NanoFree[™] Package
- 1.65 V to 3.6 V on A port and 2.3 V to 5.5 V on B port (V_{CCA} \leq V_{CCB})
- No Power-Supply Sequencing Required V_{CCA} or V_{CCB} Can Be Ramped First
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - A Port
 - 2000-V Human-Body Model (A114-B)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
 - B Port
 - 15-kV Human-Body Model (A114-B)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- IEC 61000-4-2 ESD (B Port)
 - ±8-kV Contact Discharge
 - ±10-kV Air-Gap Discharge

2 Applications

- Handset
- Smartphone
- Tablet
- Desktop PC

3 Description

Tools &

Software

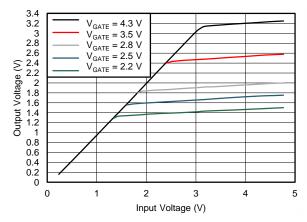
This 4-bit non-inverting translator uses two separate configurable power-supply rails. The A port is designed to track V_{CCA} . V_{CCA} accepts any supply voltage from 1.65 V to 3.6 V. V_{CCA} must be less than or equal to V_{CCB} . The B port is designed to track V_{CCB} . V_{CCB} accepts any supply voltage from 2.3 V to 5.5 V. This allows for low-voltage bidirectional translation between any of the 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes.

Support &

Community

29

When the output-enable (OE) input is low, all outputs are placed in the high-impedance state.


The TXS0104E is designed so that the OE input circuit is supplied by $V_{\text{CCA}}.$

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

PART NUMBER	PACKAGE	BODY SIZE (NOM)			
	SOIC (14)	8.65 mm × 3.91 mm			
	TSSOP (14)	5.00 mm × 4.40 mm			
TXS0104E	BGA (12)	2.00 mm × 2.50 mm			
	VQFN (14)	3.50 mm × 3.50 mm			
	DSBGA (12)	1.90 mm × 1.90 mm			

 For all available packages, see the orderable addendum at the end of the datasheet.

Transfer Characteristics of an N-Channel Transistor

Device Information⁽¹⁾

Product Folder Links: TXS0104E

Table of Contents

1	Feat	ures 1
2	App	lications 1
3	Desc	cription 1
4	Revi	sion History 2
5	Pin (Configuration and Functions 3
6	Spee	cifications
	6.1	Absolute Maximum Ratings5
	6.2	Handling Ratings 5
	6.3	Recommended Operating Conditions 6
	6.4	Thermal Information: GXU, ZXU, and YZT 6
	6.5	Thermal Information: D, PW, and RGY 6
	6.6	Electrical Characteristics7
	6.7	Timing Requirements: $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V} \dots 8$
	6.8	Timing Requirements: $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V} \dots 8$
	6.9	Timing Requirements: $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V} \dots 8$
	6.10	Switching Characteristics: $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V} 9$
	6.11	Switching Characteristics: $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V} 10$
	6.12	Switching Characteristics: $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V} 11$
	6.13	Typical Characteristics 12
7	Para	meter Measurement Information 13

	7.1	Load Circuits	13
	7.2	Voltage Waveforms	14
8	Deta	iled Description	15
	8.1	Overview	15
	8.2	Functional Block Diagram	15
	8.3	Feature Description	16
	8.4	Device Functional Modes	16
9	App	lication and Implementation	17
	9.1	Application Information	17
	9.2	Typical Application	17
10	Pow	ver Supply Recommendations	19
11	Laye	out	19
	11.1	Layout Guidelines	19
	11.2	Layout Example	19
12	Dev	ice and Documentation Support	20
	12.1	Trademarks	20
	12.2	Electrostatic Discharge Caution	20
	12.3	Glossary	20
13	Mec	hanical, Packaging, and Orderable	
-		mation	20

4 Revision History

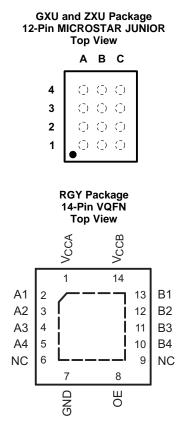
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

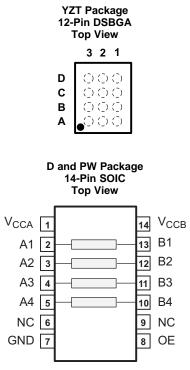
. Povicion E (A st 2012) to Povision -Cha

anges from Revision E (August 2013) to Revision F	Page
Added Pin Configuration and Functions section, Handling Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section section	1
Deleted the Package thermal impedance information from the Absolute max ratings table into the Thermal Information table. Moved the T _{stg} row into the new Handling Ratings table.	5
Changed the last 2 rows of MIN MAX (24 MAX and 2 MAX) to the MIN columns, in the first switching characteristics table	9

Changes from Revision D (May 2008) to Revision E Deleted the ordering table 1

2


EXAS **ISTRUMENTS**


www.ti.com

Page

5 Pin Configuration and Functions

NOTE: NC - No internal connection

NOTE: NC - No internal connection

Pin Functions: D, PW, or RGY

PIN		ТҮРЕ	DESCRIPTION		
NAME	NO.	ITPE	DESCRIPTION		
A1	2	I/O	Input/output A1. Referenced to V _{CCA} .		
A2	3	I/O	Input/output A2. Referenced to V _{CCA} .		
A3	4	I/O	Input/output A3. Referenced to V _{CCA} .		
A4	5	I/O	Input/output A4. Referenced to V _{CCA} .		
B1	13	I/O	Input/output B1. Referenced to V _{CCB} .		
B2	12	I/O	Input/output B2. Referenced to V _{CCB} .		
B3	11	I/O	Input/output B3. Referenced to V _{CCB} .		
B4	10	I/O	Input/output B4. Referenced to V _{CCB} .		
GND	7	S	Ground		
NC	6	N/A	No connection. Not internally connected.		
NC	9	N/A	No connection. Not internally connected.		
OE	8	I	3-state output-mode enable. Pull OE low to place all outputs in 3-state mode. Referenced to V_{CCA} .		
V _{CCA}	1	S	A-port supply voltage. 1.65 V \leq V _{CCA} \leq 3.6 V and V _{CCA} \leq V _{CCB} .		
V _{CCB}	14	S	B-port supply voltage. 2.3 V \leq V _{CCB} \leq 5.5 V.		
Thermal Pad	_	-	For the RGY package, the exposed center thermal pad must be connected to ground		

TXS0104E SCES651F – JUNE 2006 – REVISED DECEMBER 2014

www.ti.com

NSTRUMENTS

EXAS

Pin Functions: BGA

PI	PIN TYPE		DESCRIPTION
NAME	NO.	ITPE	DESCRIPTION
A1	A1	I/O	Input/output A1. Referenced to V _{CCA} .
A2	A2	I/O	Input/output A2. Referenced to V _{CCA} .
A3	A3	I/O	Input/output A3. Referenced to V _{CCA} .
A4	A4	I/O	Input/output A4. Referenced to V _{CCA} .
B1	C1	I/O	Input/output B1. Referenced to V _{CCB} .
B2	C2	I/O	Input/output B2. Referenced to V _{CCB} .
B3	C3	I/O	Input/output B3. Referenced to V _{CCB} .
B4	C4	I/O	Input/output B4. Referenced to V _{CCB} .
GND	B4	S	Ground
NC	-	N/A	No connection. Not internally connected.
NC	-	N/A	No connection. Not internally connected.
OE	B3	I	3-state output-mode enable. Pull OE low to place all outputs in 3-state mode. Referenced to V_{CCA} .
V _{CCA}	B2	S	A-port supply voltage. 1.65 V \leq V _{CCA} \leq 3.6 V and V _{CCA} \leq V _{CCB} .
V _{CCB}	B1	S	B-port supply voltage. 2.3 V \leq V _{CCB} \leq 5.5 V.

Pin Functions: DSBGA

PI	N	TYPE	DESCRIPTION
NAME	NO.	TIFE	DESCRIPTION
A1	A3	I/O	Input/output A1. Referenced to V _{CCA} .
A2	B3	I/O	Input/output A2. Referenced to V _{CCA} .
A3	C3	I/O	Input/output A3. Referenced to V _{CCA} .
A4	D3	I/O	Input/output A4. Referenced to V _{CCA} .
B1	A1	I/O	Input/output B1. Referenced to V _{CCB} .
B2	B1	I/O	Input/output B2. Referenced to V _{CCB} .
B3	C1	I/O	Input/output B3. Referenced to V _{CCB} .
B4	D1	I/O	Input/output B4. Referenced to V _{CCB} .
GND	D2	S	Ground
NC	-	N/A	No connection. Not internally connected.
NC	-	N/A	No connection. Not internally connected.
OE	C2	Ι	3-state output-mode enable. Pull OE low to place all outputs in 3-state mode. Referenced to V_{CCA} .
V _{CCA}	B2	S	A-port supply voltage. 1.65 V \leq V _{CCA} \leq 3.6 V and V _{CCA} \leq V _{CCB} .
V _{CCB}	A2	S	B-port supply voltage. 2.3 V \leq V _{CCB} \leq 5.5 V.

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CCA}			-0.5	4.6	V
V_{CCB}	Supply voltage range		-0.5	6.5	v
V	Input voltage range ⁽²⁾	A port	-0.5	4.6	V
VI	Voltage range applied to any output	B port	-0.5	6.5	v
V	Voltage range applied to any output	A port	-0.5	4.6	V
Vo	in the high-impedance or power-off state ⁽²⁾	B port	-0.5	6.5	v
V	Voltage range applied to any output in the high or low state $^{(2)}$ $^{(3)}$	A port	-0.5	V _{CCA} + 0.5	v
Vo	voltage lange applied to any output in the high of low state () (B port	-0.5	V _{CCB} + 0.5	v
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current		-50	50	mA
	Continuous current through each V_{CCA} , V_{CCB} , or GND		-100	100	mA

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

6.2 Handling Ratings

				MIN	MAX	UNIT
T _{stg}	Storage temperatur	re range		-65	150	°C
		A Port		2000	V	
		JS-001, all pins ⁽¹⁾	B Port		15	kV
V	Electrostatic	ectrostatic Charged device model (CDM), per JEDEC	A Port	1000		
V _(ESD)	JS-001, all pins ⁽¹⁾ Electrostatic Charged device model (CDM), p	specification JESD22-C101, all pins ⁽²⁾	B Port		1000	V
		Machine model (MM)	A Port		200	v
		E		200		

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

STRUMENTS

XAS

6.3 Recommended Operating Conditions⁽¹⁾⁽²⁾

			V _{CCA}	V _{CCB}	MIN	MAX	UNIT
V_{CCA}	Supply voltage ⁽³⁾				1.65	3.6	V
V _{CCB}	Supply vollage				2.3	5.5	v
		A port I/Op	1.65 V to 1.95 V	2.3 V to 5.5 V	$V_{CCI} - 0.2$	V _{CCI}	
V	High-level input	A-port I/Os	2.3 V to 3.6 V	2.3 V 10 5.5 V	V _{CCI} - 0.4	V _{CCI}	V
VIH	voltage	B-port I/Os	1.65 V to 3.6 V	2.3 V to 5.5 V	$V_{CCI} - 0.4$	V _{CCI}	V
		OE input	1.05 V 10 3.0 V	2.3 V to 5.5 V	$V_{CCA} \times 0.65$	5.5	
		A-port I/Os	1.65 V to 3.6 V		0	0.15	
V _{IL}	Low-level input voltage	B-port I/Os		2.3 V to 5.5 V	0	0.15	V
	voltage	OE input			0	$V_{CCA} \times 0.35$	
		A-port I/Os, push-pull driving				10	
Δt/Δv	Δt/Δv Input transition rise or fall rate	B-port I/Os, push-pull driving	1.65 V to 3.6 V	2.3 V to 5.5 V		10	ns/V
		Control input				10	
T _A	Operating free-air ter	mperature			-40	85	°C

(1)

(2)

 V_{CCI} is the supply voltage associated with the input port. V_{CCO} is the supply voltage associated with the output port. V_{CCA} must be less than or equal to V_{CCB} , and V_{CCA} must not exceed 3.6 V. (3)

6.4 Thermal Information: GXU, ZXU, and YZT

			TXS0104E		
		GXU/ZXU (12) ⁽²⁾	YZT (12)	UNIT	
$R_{ extsf{ heta}JA}$	Junction-to-ambient thermal resistance	132.0	89.2		
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	98.4	0.9		
$R_{ extsf{ heta}JB}$	Junction-to-board thermal resistance	68.7	14.4	°C/W	
ΨJT	Junction-to-top characterization parameter	3.1	3.0		
ψ_{JB}	Junction-to-board characterization parameter	68.2	14.4		

For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. (1)

(2) The package thermal impedance is calculated in accordance with JESD 51-7.

6.5 Thermal Information: D, PW, and RGY

	THERMAL METRIC ⁽¹⁾	TXS0104E			
		D(14) ⁽¹⁾	PW(14) ⁽²⁾	RGY(14) ⁽³⁾	UNIT
R_{\thetaJA}	Junction-to-ambient thermal resistance	90.4	120.1	56.1	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	50.1	49.4	68.8	
R _{0JB}	Junction-to-board thermal resistance	45.0	61.8	32.1	°C/W
ΨJT	Junction-to-top characterization parameter	14.4	6.2	3.1	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	44.7	61.2	32.3	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	-	-	12.8	

For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. (1)

The package thermal impedance is calculated in accordance with JESD 51-7. (2)

(3) The package thermal impedance is calculated in accordance with JESD 51-5.

6.6 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted) $^{(1)(2)(3)}$

		TERT CONDITIONS	v	V	T,	ς = 25°C	;	T _A = 25°C to 8	5°C	
		TEST CONDITIONS	V _{CCA}	V _{CCB}	MIN	TYP	MAX	MIN	MAX	UNIT
V _{OHA}		$ I_{OH} = -20 \ \mu\text{A}, \\ V_{IB} \ge V_{CCB} - 0.4 \ V $	1.65 V to 3.6 V	2.3 V to 5.5 V				$V_{CCA} \times 0.8$		V
V _{OLA}		$I_{OL} = 1 \text{ mA},$ $V_{IB} \leq 0.15 \text{ V}$	1.65 V to 3.6 V	2.3 V to 5.5 V					0.4	V
V _{OHB}		$ I_{OH} = -20 \ \mu A, \\ V_{IA} \ge V_{CCA} - 0.2 \ V $	1.65 V to 3.6 V	2.3 V to 5.5 V				$V_{CCB} \times 0.8$		V
V _{OLB}		$I_{OL} = 1 \text{ mA},$ $V_{IA} \le 0.15 \text{ V}$	1.65 V to 3.6 V	2.3 V to 5.5 V					0.4	V
I _I	OE	V _I = V _{CCI} or GND	1.65 V to 3.6 V	2.3 V to 5.5 V	-1		1	-2	2	μA
I _{OZ}	A or B port	OE = V _{IL}	1.65 V to 3.6 V	2.3 V to 5.5 V	-1		1	-2	2	μA
			1.65 V to V _{CCB}	2.3 V to 5.5 V					2.4	
I _{CCA}		$V_1 = V_0 = Open,$ $I_0 = 0$	3.6 V	0					2.2	μA
		10 - 0	0	5.5 V					-1	
			1.65 V to V _{CCB}	2.3 V to 5.5 V					12	
I _{CCB}		$V_1 = V_0 = Open,$ $I_0 = 0$	3.6 V	0					-1	μA
		10 - 0	0	5.5 V					1	
I _{CCA} + I _{CC}	СВ	$V_I = V_O = Open,$ $I_O = 0$	1.65 V to V _{CCB}	2.3 V to 5.5 V					14.4	μA
CI	OE		3.3 V	3.3 V		2.5			3.5	pF
0	A port		2.2.1/	2.2.1/		5			6.5	~ F
C _{io}	B port		3.3 V	3.3 V		12			16.5 pF	

V_{CCI} is the supply voltage associated with the input port.
 V_{CCO} is the supply voltage associated with the output port.
 V_{CCA} must be less than or equal to V_{CCB}, and V_{CCA} must not exceed 3.6 V.

TEXAS INSTRUMENTS

TXS0104E

SCES651F-JUNE 2006-REVISED DECEMBER 2014

www.ti.com

6.7 Timing Requirements: $V_{CCA} = 1.8 V \pm 0.15 V$

over recommended operating free-air temperature range, $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ (unless otherwise noted)

		U	0,000							
				V _{CCB} = 2 ± 0.2	2.5 V V	V _{CCB} = 3 ± 0.3	3.3 V V	V _{CCB} = ± 0.5	= 5 V 5 V	UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
	Data rate	Push-pull driving			24		24		24	Mbps
	Data Tale	Open-drain driving			2		2		2	wops
	Push-pull driving		Data inputa	41		41		41		~~
۱ _W	Puise duration	se duration Open-drain driving	Se duration Open-drain driving Data inputs	500		500		500		ns

6.8 Timing Requirements: $V_{CCA} = 2.5 V \pm 0.2 V$

over recommended operating free-air temperature range, V_{CCA} = 2.5 V ± 0.2 V (unless otherwise noted)

		U	0,004		· ·			,			
				V _{CCB} = 2 ± 0.2	2.5 V V	V _{CCB} = 3 ± 0.3	.3 V V	V _{CCB} = ± 0.5	= 5 V 5 V	UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX		
	Data rata	Push-pull driving			24		24		24		
	Data rate Open-drain driving				2		2		2	Mbps	
	Dulas duration	Push-pull driving	Data inputa	41		41		41		20	
۱ _W	t _w Pulse duration	Open-drain driving	Data inputs	500		500		500		ns	

6.9 Timing Requirements: V_{CCA} = 3.3 V \pm 0.3 V

over recommended operating free-air temperature range, V_{CCA} = 3.3 V ± 0.3 V (unless otherwise noted)

					$C_{B} = 3.3 V$ $V_{CCB} = 5 V$ $\pm 0.3 V$ $\pm 0.5 V$		UNIT	
				MIN	MAX	MIN	MAX	
	Data rata	Push-pull driving			24		24	Mhaa
	Data rate	Open-drain driving			2			Mbps
+	Pulse duration	Push-pull driving	- Data inputs	41		41		20
۱ _w	w Pulse duration	Open-drain driving		500		500		ns

6.10 Switching Characteristics: $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$

over recommended operating free-air temperature range, V_{CCA} = 1.8 V ± 0.15 V (unless otherwise noted)

	FROM	TO	TEST	V _{CCB} = ± 0.	= 2.5 V 2 V	V _{CCB} = ± 0.3	3.3 V 3 V	V _{CCB} = 5 V ± 0.5 V		UNIT
	(INPUT)	(OUTPUT)	CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	
			Push-pull driving		4.6		4.7		5.8	
t _{PHL}	٨	В	Open-drain driving	2.9	8.8	2.9	9.6	3	10	~~~
	A	В	Push-pull driving		6.8		6.8		7	ns
t _{PLH}			Open-drain driving	45	260	36	208	27	198	
			Push-pull driving		4.4		4.5		4.7	
t _{PHL}	В	А	Open-drain driving	1.9	5.3	1.1	4.4	1.2	4	ns
	D	A	Push-pull driving		5.3		4.5		0.5	115
t _{PLH}			Open-drain driving	45	175	36	140	27	102	
t _{en}	OE	A or B			200		200		200	ns
t _{dis}	OE	A or B			50		40		35	ns
			Push-pull driving	3.2	9.5	2.3	9.3	2	7.6	
t _{rA}	A-port ris	se time	Open-drain driving	38	165	30	132	22	95	ns
			Push-pull driving	4	10.8	2.7	9.1	2.7	7.6	
t _{rB}	B-port ris	se time	Open-drain driving	34	145	23	106	10	58	ns
			Push-pull driving	2	5.9	1.9	6	1.7	13.3	
t _{fA}	A-port fa	all time	Open-drain driving	4.4	6.9	4.3	6.4	4.2	6.1	-
			Push-pull driving	2.9	7.6	2.8	7.5	2.8	8.8	ns
t _{fB}	B-port fa	all time	Open-drain driving	6.9	13.8	7.5	16.2	7	16.2	
t _{SK(O)}	Channel-to-cl	nannel skew			1		1		1	ns
			Push-pull driving	24		24		24		
Max data rate			Open-drain driving	2		2		2		Mbps

TXS0104E

SCES651F-JUNE 2006-REVISED DECEMBER 2014

www.ti.com

STRUMENTS

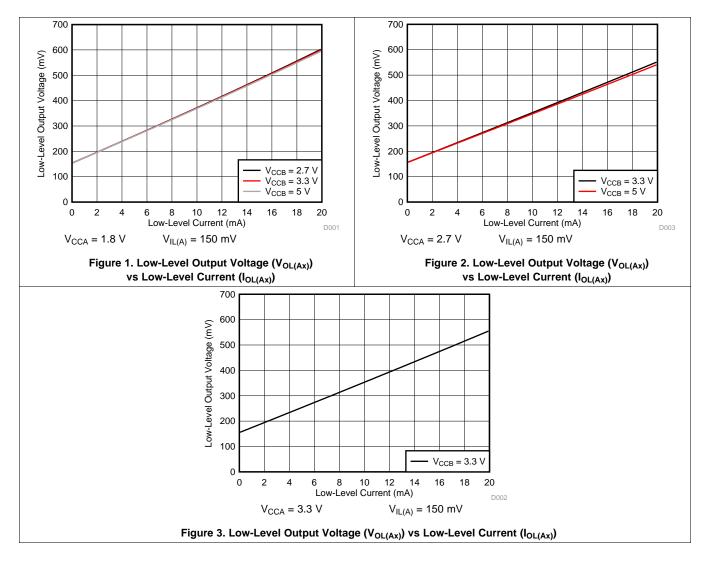
ÈXAS

6.11 Switching Characteristics: $V_{CCA} = 2.5 V \pm 0.2 V$

over recommended operating free-air temperature range, $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted)

	FROM	TO	TEST	V _{CCB} = ± 0.	= 2.5 V .2 V	V _{CCB} = ± 0.		V _{CCB} ± 0.	= 5 V 5 V	UNI
	(INPUT)	(OUTPUT)	CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	
			Push-pull driving		3.2		3.3		3.4	
t _{PHL}	٨	В	Open-drain driving	1.7	6.3	2	6	2.1	5.8	
	A	В	Push-pull driving		3.5		4.1		4.4	ns
t _{PLH}			Open-drain driving	43	250	36	206	27	190	
+			Push-pull driving		3		3.6		4.3	
t _{PHL}	В	А	Open-drain driving	1.8	4.7	2.6	4.2	1.2	4	ns
	В	A	Push-pull driving		2.5		1.6		0.7	ns
t _{PLH}			Open-drain driving	44	170	37	140	27	103	
t _{en}	OE	A or B			200		200		200	ns
t _{dis}	OE	A or B			50		40		35	ns
	A north	aa tima	Push-pull driving	2.8	7.4	2.6	6.6	1.8	5.6	
t _{rA}	A-port ri	se ume	Open-drain driving	34	149	28	121	24	89	ns
	Deserter	aa tima	Push-pull driving	3.2	8.3	2.9	7.2	2.4	6.1	
t _{rB}	B-port ri	se time	Open-drain driving	35	151	24	112	12	64	ns
	Anorth	all time	Push-pull driving	1.9	5.7	1.9	5.5	1.8	5.3	
t _{fA}	A-port f		Open-drain driving	4.4	6.9	4.3	6.2	4.2	5.8	ns
	Dreamth	all time	Push-pull driving	2.2	7.8	2.4	6.7	2.6	6.6	
t _{fB}	B-port f		Open-drain driving	5.1	8.8	5.4	9.4	5.4	10.4	ns
t _{SK(O)}	Channel-to-c	hannel skew			1		1		1	ns
			Push-pull driving	24		24		24		Miss
Max data rate			Open-drain driving	2		2		2		Mbp

6.12 Switching Characteristics: $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$

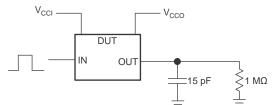

over recommended operating free-air temperature range, V_{CCA} = 3.3 V ± 0.3 V (unless otherwise noted)

	FROM	TO	TEST	V _{CCB} = ± 0.3	3.3 V 8 V	V _{CCB} ± 0.	= 5 V 5 V	UNIT
	(INPUT)	(OUTPUT)	CONDITIONS	MIN	MAX	MIN	MAX	
+			Push-pull driving		2.4		3.1	
t _{PHL}	٨	Р	Open-drain driving	1.3	4.2	1.4	4.6	20
	A	В	Push-pull driving		4.2		4.4	ns
t _{PLH}			Open-drain driving	36	204	28	165	
			Push-pull driving		2.5		3.3	
t _{PHL}	- В	А	Open-drain driving	1	124	1	97	ns
	D	A	Push-pull driving		2.5		2.6	115
t _{PLH}			Open-drain driving	3	139	3	105	
t _{en}	OE	A or B			200		200	ns
t _{dis}	OE	A or B			40		35	ns
+	A-port r	ico timo	Push-pull driving	2.3	5.6	1.9	4.8	ns
t _{rA}	А-роп т		Open-drain driving	25	116	19	85	115
+	B port r	ise time	Push-pull driving	2.5	6.4	2.1	7.4	20
t _{rB}	в-роп г		Open-drain driving	26	116	14	72	ns
+	A-port f	all time	Push-pull driving	2	5.4	1.9	5	ns
t _{fA}	А-роп т		Open-drain driving	4.3	6.1	4.2	5.7	115
	Dearth	ioll time	Push-pull driving	2.3	7.4	2.4	7.6	20
t _{fB}	B-port f		Open-drain driving	5	7.6	4.8	8.3	ns
t _{SK(O)}	Channel-to-c	hannel skew			1		1	ns
Max data rata			Push-pull driving	24		24		Mhno
Max data rate			Open-drain driving	2		2		Mbps

TXS0104E SCES651F – JUNE 2006 – REVISED DECEMBER 2014

www.ti.com

6.13 Typical Characteristics



TXS0104E SCES651F – JUNE 2006 – REVISED DECEMBER 2014

www.ti.com

7 Parameter Measurement Information

7.1 Load Circuits

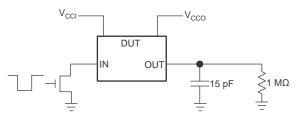
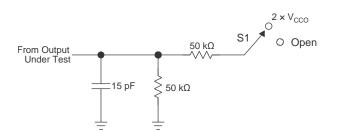
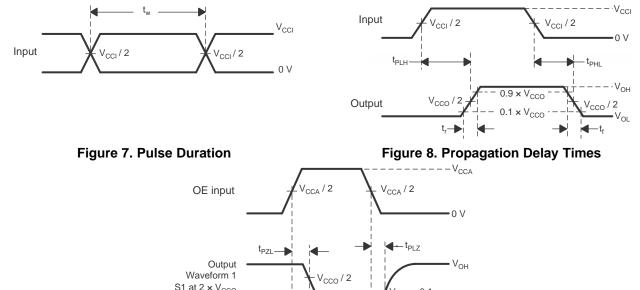
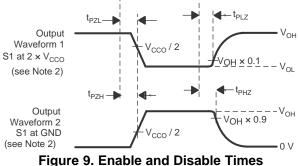



Figure 5. Data Rate, Pulse Duration, Propagation Delay, Output Rise-Time and Fall-Time Measurement Using an Open-Drain Driver

TEST	S1
t _{PZL} / t _{PLZ} (t _{dis})	$2 \times V_{CCO}$
t _{PHZ} / t _{PZH} (t _{en})	Open

Figure 6. Load Circuit for Enable-Time and Disable-Time Measurement


- 1. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- 2. t_{PZL} and t_{PZH} are the same as t_{en} .
- 3. V_{CCI} is the V_{CC} associated with the input port.
- 4. V_{CCO} is the V_{CC} associated with the output port.

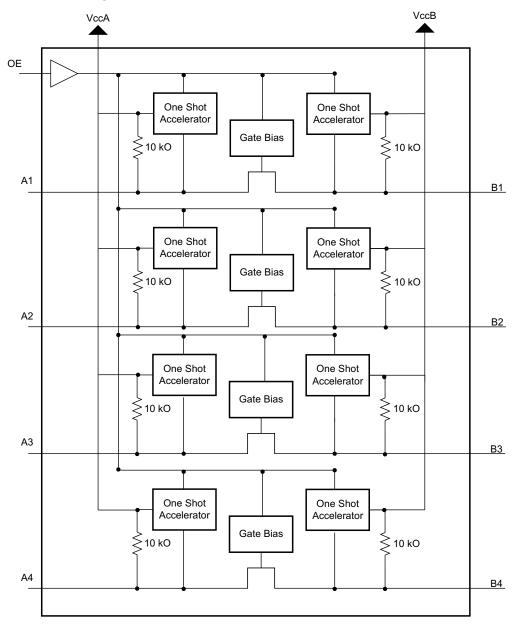

TEXAS INSTRUMENTS

TXS0104E SCES651F – JUNE 2006 – REVISED DECEMBER 2014

www.ti.com

7.2 Voltage Waveforms

- 1. C_L includes probe and jig capacitance.
- 2. Waveform 1 in Figure 9 is for an output with internal such that the output is high, except when OE is high (see Figure 6). Waveform 2 in Figure 9 is for an output with conditions such that the output is low, except when OE is high.
- 3. All input pulses are supplied by generators having the following characteristics: PRR≤ 10 MHz, $Z_0 = 50 \Omega$, $dv/dt \ge 1 V/ns$.
- 4. The outputs are measured one at a time, with one transition per measurement.
- 5. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- 6. t_{PZL} and t_{PZH} are the same as t_{en} .
- 7. t_{PLH} and t_{PHL} are the same as t_{pd} .
- 8. V_{CCI} is the V_{CC} associated with the input port.
- 9. V_{CCO} is the V_{CC} associated with the output port.



8 Detailed Description

8.1 Overview

The TXS0104E device is a directionless voltage-level translator specifically designed for translating logic voltage levels. The A port is able to accept I/O voltages ranging from 1.65 V to 3.6 V, while the B port can accept I/O voltages from 2.3 V to 5.5 V. The device is a pass gate architecture with edge rate accelerators (one shots) to improve the overall data rate. $10-k\Omega$ pullup resistors, commonly used in open drain applications, have been conveniently integrated so that an external resistor is not needed. While this device is designed for open drain applications, the device can also translate push-pull CMOS logic outputs.

8.2 Functional Block Diagram

TXS0104E SCES651F – JUNE 2006–REVISED DECEMBER 2014

8.3 Feature Description

8.3.1 Architecture

The TXS0104E architecture (see Figure 10) does not require a direction-control signal in order to control the direction of data flow from A to B or from B to A.

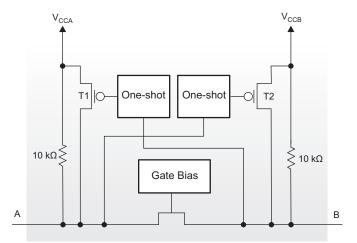


Figure 10. Architecture of a TXS01xx Cell

Each A-port I/O has an internal 10-k Ω pullup resistor to V_{CCA}, and each B-port I/O has an internal 10-k Ω pullup resistor to V_{CCB}. The output one-shots detect rising edges on the A or B ports. During a rising edge, the one-shot turns on the PMOS transistors (T1, T2) for a short duration which speeds up the low-to-high transition.

8.3.2 Input Driver Requirements

The fall time (t_{fA} , t_{fB}) of a signal depends on the output impedance of the external device driving the data I/Os of the TXS0104E device. Similarly, the t_{PHL} and maximum data rates also depend on the output impedance of the external driver. The values for t_{fA} , t_{fB} , t_{PHL} , and maximum data rates in the data sheet assume that the output impedance of the external driver is less than 50 Ω .

8.3.3 Power Up

During operation, ensure that $V_{CCA} \leq V_{CCB}$ at all times. During power-up sequencing, $V_{CCA} \geq V_{CCB}$ does not damage the device, so any power supply can be ramped up first.

8.3.4 Enable and Disable

The TXS0104E device has an OE input that disables the device by setting OE low, which places all I/Os in the high-impedance state. The disable time (t_{dis}) indicates the delay between the time when the OE pin goes low and when the outputs actually enter the high-impedance state. The enable time (t_{en}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after the OE pin is taken high.

8.3.5 Pullup and Pulldown Resistors on I/O Lines

Each A-port I/O has an internal 10-k Ω pullup resistor to V_{CCA}, and each B-port I/O has an internal 10-k Ω pullup resistor to V_{CCB}. If a smaller value of pullup resistor is required, an external resistor must be added from the I/O to V_{CCA} or V_{CCB} (in parallel with the internal 10-k Ω resistors).

8.4 Device Functional Modes

The TXS0104E device has two functional modes, enabled and disabled. To disable the device set the OE input low, which places all I/Os in a high impedance state. Setting the OE input high will enable the device.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TXS0104E device can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. The TXS0104E device is ideal for use in applications where an open-drain driver is connected to the data I/Os. The TXS0104E device can also be used in applications where a push-pull driver is connected to the data I/Os, but the TXB0104 device might be a better option for such push-pull applications.

9.2 Typical Application

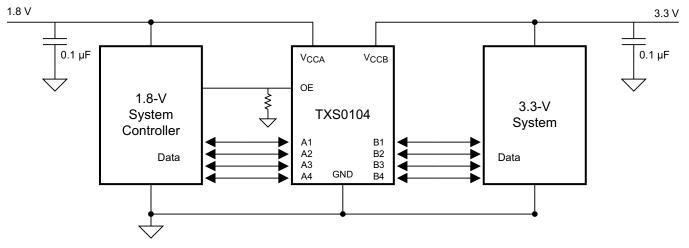


Figure 11. Application Schematic

9.2.1 Design Requirements

For this design example, use the parameters listed in Table 1.

Table 1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input voltage range	1.65 to 3.6 V
Output voltage range	2.3 to 5.5 V

9.2.2 Detailed Design Procedure

To begin the design process, determine the following:

- Input voltage range
 - Use the supply voltage of the device that is driving the TXS0104E device to determine the input voltage range. For a valid logic high the value must exceed the V_{IH} of the input port. For a valid logic low the value must be less than the V_{IL} of the input port.
- Output voltage range
 - Use the supply voltage of the device that the TXS0104E device is driving to determine the output voltage range.

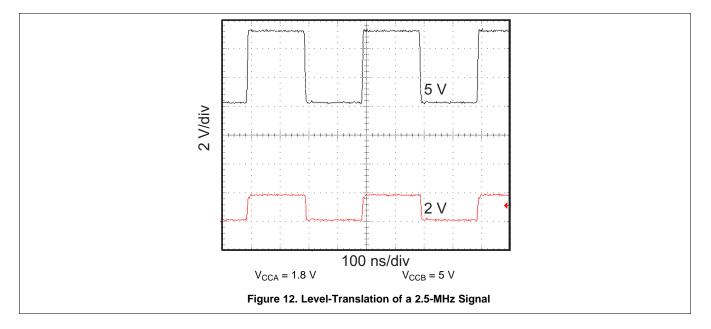
_

(1)

ISTRUMENTS

EXAS

The TXS0104E device has 10-k Ω internal pullup resistors. External pullup resistors can be added to reduce the total RC of a signal trace if necessary.


• An external pull down resistor decreases the output V_{OH} and V_{OL} . Use Equation 1 to calculate the V_{OH} as a result of an external pull down resistor.

 $V_{OH} = V_{CCx} \times R_{PD} / (R_{PD} + 10 \text{ k}\Omega)$

where

 V_{CCx} is the supply voltage on either V_{CCA} or V_{CCB} R_{PD} is the value of the external pull down resistor

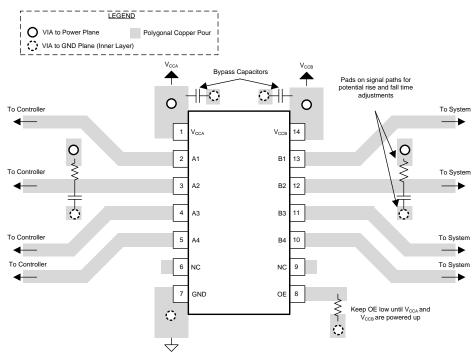
9.2.3 Application Curve

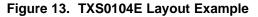
10 Power Supply Recommendations

The TXS0104E device uses two separate configurable power-supply rails, V_{CCA} and V_{CCB} . V_{CCB} accepts any supply voltage from 2.3 V to 5.5 V and V_{CCA} accepts any supply voltage from 1.65 V to 3.6 V as long as Vs is less than or equal to V_{CCB} . The A port and B port are designed to track V_{CCA} and V_{CCB} respectively allowing for low-voltage bidirectional translation between any of the 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes.

The TXS0104E device does not require power sequencing between V_{CCA} and V_{CCB} during power-up so the power-supply rails can be ramped in any order. A V_{CCA} value greater than or equal to V_{CCB} (V_{CCA} \geq V_{CCB}) does not damage the device, but during operation, V_{CCA} must be less than or equal to V_{CCB} (V_{CCA} \leq V_{CCB}) at all times.

The output-enable (OE) input circuit is designed so that it is supplied by V_{CCA} and when the (OE) input is low, all outputs are placed in the high-impedance state. To ensure the high-impedance state of the outputs during power up or power down, the OE input pin must be tied to GND through a pulldown resistor and must not be enabled until V_{CCA} and V_{CCB} are fully ramped and stable. The minimum value of the pulldown resistor to ground is determined by the current-sourcing capability of the driver.


11 Layout


11.1 Layout Guidelines

To ensure reliability of the device, following common printed-circuit board layout guidelines is recommended.

- Bypass capacitors should be used on power supplies.
- Short trace lengths should be used to avoid excessive loading.
- PCB signal trace-lengths must be kept short enough so that the round-trip delay of any reflection is less than the one shot duration, approximately 30 ns, ensuring that any reflection encounters low impedance at the source driver.
- Placing pads on the signal paths for loading capacitors or pullup resistors to help adjust rise and fall times of signals depending on the system requirements

11.2 Layout Example

12 Device and Documentation Support

12.1 Trademarks

NanoFree is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

25-Oct-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TXS0104ED	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TXS0104E	Samples
TXS0104EDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TXS0104E	Samples
TXS0104EDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TXS0104E	Samples
TXS0104EDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TXS0104E	Samples
TXS0104EPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	YF04E	Samples
TXS0104EPWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	YF04E	Samples
TXS0104ERGYR	ACTIVE	VQFN	RGY	14	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	YF04E	Samples
TXS0104ERGYRG4	ACTIVE	VQFN	RGY	14	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	YF04E	Samples
TXS0104EYZTR	ACTIVE	DSBGA	YZT	12	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(2HN ~ 2N ~ 2N7)	Samples
TXS0104EZXUR	ACTIVE	BGA MICROSTAR JUNIOR	ZXU	12	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	YF04E	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

PACKAGE OPTION ADDENDUM

25-Oct-2016

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

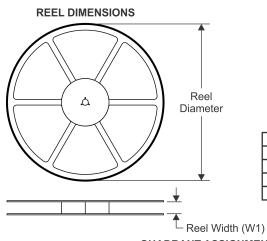
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

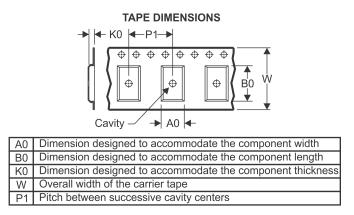
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TXS0104E :

• Automotive: TXS0104E-Q1

NOTE: Qualified Version Definitions:


• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

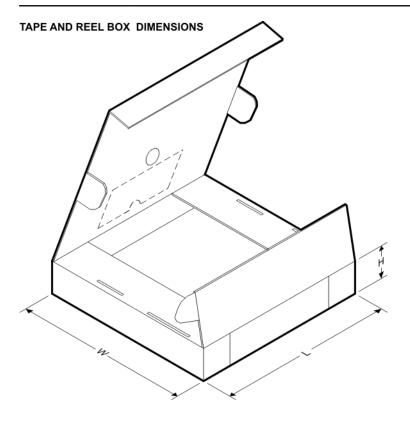

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

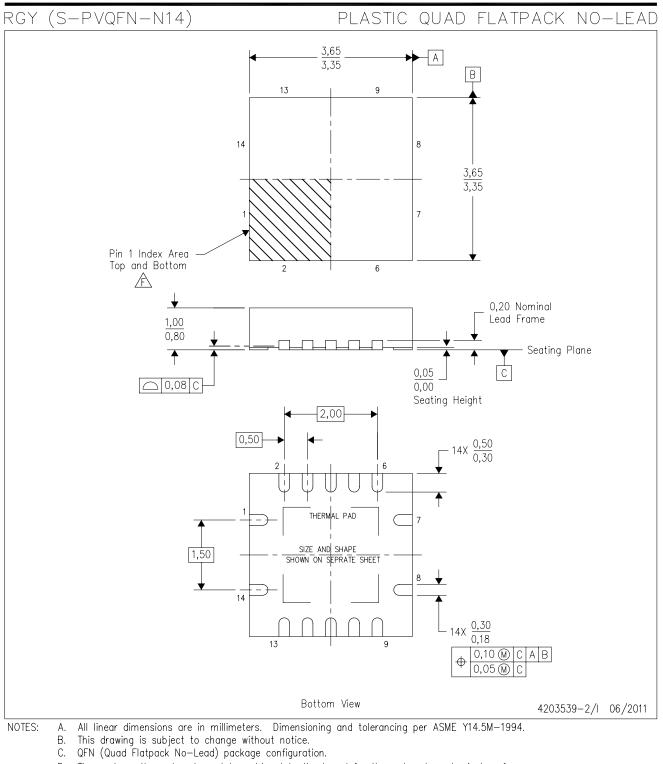
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TXS0104EDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TXS0104EPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TXS0104ERGYR	VQFN	RGY	14	3000	330.0	12.4	3.75	3.75	1.15	8.0	12.0	Q1
TXS0104EYZTR	DSBGA	YZT	12	3000	180.0	8.4	1.49	1.99	0.75	4.0	8.0	Q2
TXS0104EZXUR	BGA MI CROSTA R JUNI OR	ZXU	12	2500	330.0	8.4	2.3	2.8	1.0	4.0	8.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION


1-Nov-2016

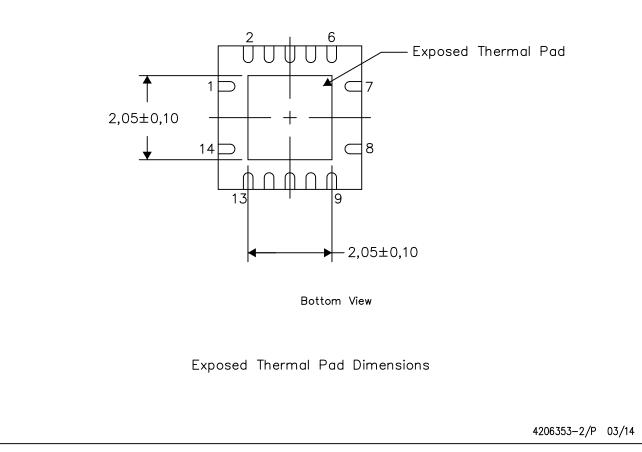
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TXS0104EDR	SOIC	D	14	2500	367.0	367.0	38.0
TXS0104EPWR	TSSOP	PW	14	2000	367.0	367.0	35.0
TXS0104ERGYR	VQFN	RGY	14	3000	367.0	367.0	35.0
TXS0104EYZTR	DSBGA	YZT	12	3000	182.0	182.0	20.0
TXS0104EZXUR	BGA MICROSTAR JUNIOR	ZXU	12	2500	336.6	336.6	28.6

MECHANICAL DATA

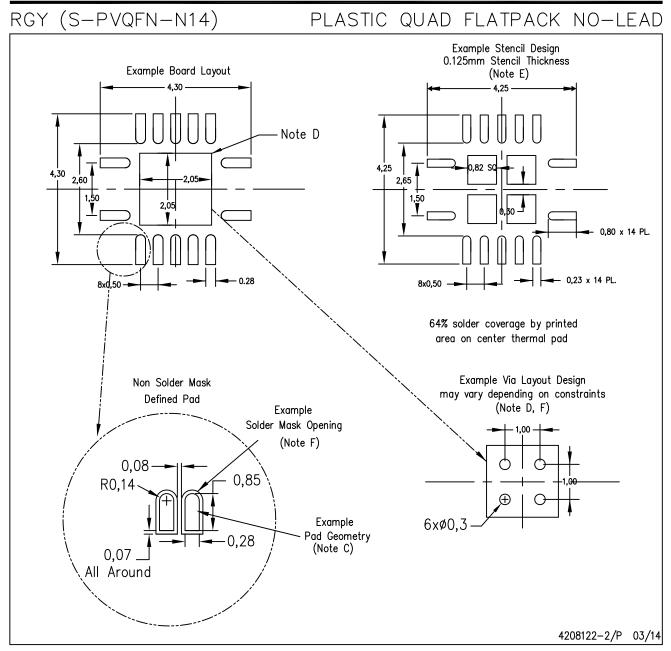
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- earrow Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated.
- The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

RGY (S-PVQFN-N14)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

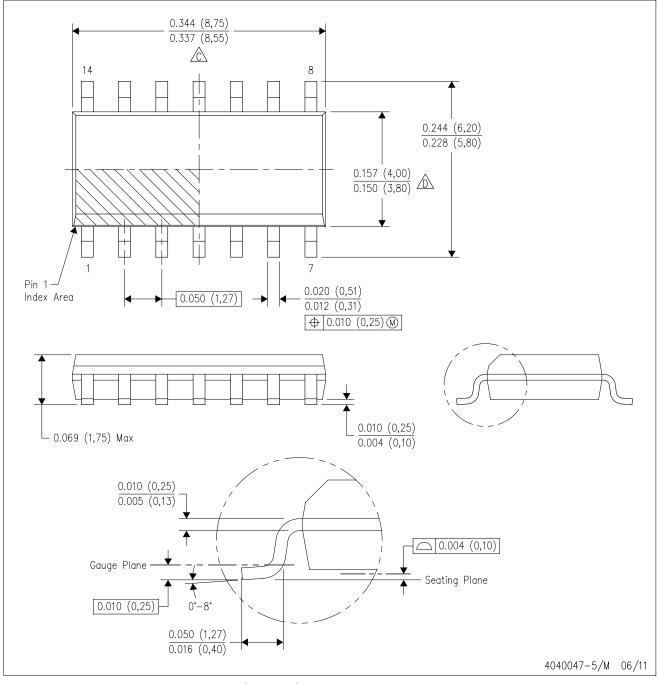

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

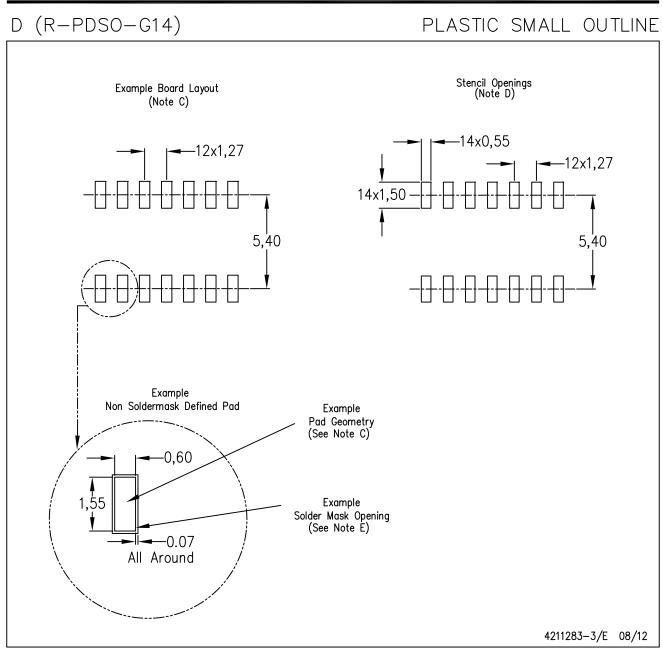
NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.


D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.

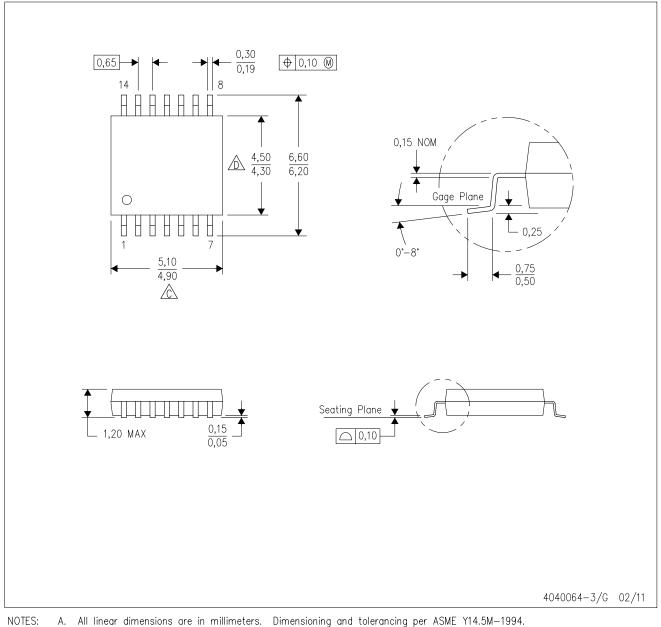
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

D (R-PDSO-G14)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

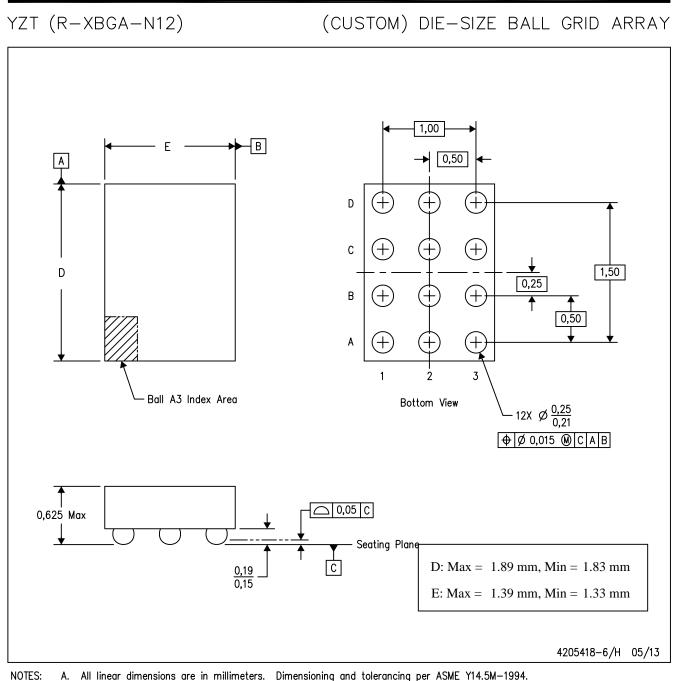
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

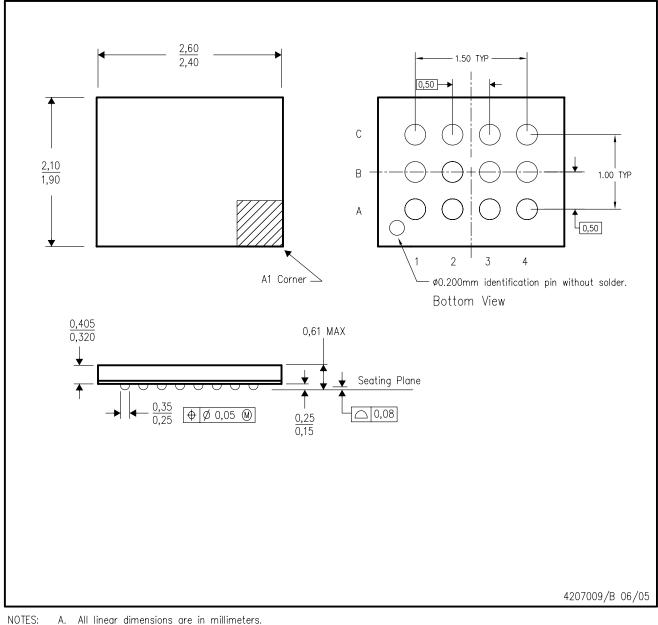

A. An integration of the information o

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

B. This drawing is subject to change without notice.


C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

ZXU (S-PBGA-N12)

PLASTIC BALL GRID ARRAY

A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. This package is a lead-free solder ball design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated