

The RF MOSFET Line 150W, 500MHz, 28V

Designed primarily for wideband large-signal output and driver stages from 100 - 500 MHz.

N-Channel enhancement mode

- Guaranteed performance @ 500 MHz, 28 Vdc Output power — 150 W Power gain — 10 dB (min.) Efficiency — 50% (min.)
- 100% tested for load mismatch at all phase angles . with VSWR 30:1
- Overall lower capacitance @ 28 V Ciss — 135 pF Coss — 140 pF Crss — 17 pF
- Simplified AVC, ALC and modulation .

Typical data for power amplifiers in industrial and commercial applications:

- Typical performance @ 400 MHz, 28 Vdc Output power — 150 W Power gain — 12.5 dB Efficiency - 60%
- Typical performance @ 225 MHz, 28 Vdc Output power - 200 W Power gain — 15 dB Efficiency - 65%

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDSS	65	Vdc
Drain–Gate Voltage (R _{GS} = 1.0 MΩ)	VDGR	65	Vdc
Gate-Source Voltage	V _{GS}	±40	Adc
Drain Current — Continuous	۱D	26	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	400 2.27	Watts W/∘C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	TJ	200	°C
THERMAL CHARACTERISTICS			

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Case	R _θ JC	0.44	°C/W

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

深圳中立信电子有限公司 0755-82560215

1

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

Product Image

Rev. V1

The RF MOSFET Line 150W, 500MHz, 28V

ELECTRICAL CHARACTERISTICS (T _C = 25°C unless otherwise	e noted)				
Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (1)					
Drain–Source Breakdown Voltage (V _{GS} = 0, I _D = 50 mA)	V(BR)DSS	65	-	-	Vdc
Zero Gate Voltage Drain Current (V _{DS} = 28 V, V _{GS} = 0)	IDSS	-	-	1	mA
Gate-Source Leakage Current (V _{GS} = 20 V, V _{DS} = 0)	IGSS	—	-	1	μΑ
ON CHARACTERISTICS (1)					
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 100 mA)	VGS(th)	1.5	2.5	4.5	Vdc
Drain–Source On–Voltage (V _{GS} = 10 V, I _D = 5 A)	VDS(on)	0.5	0.9	1.5	Vdc
Forward Transconductance (V _{DS} = 10 V, I _D = 2.5 A)	9fs	3	3.75	-	mhos
DYNAMIC CHARACTERISTICS (1)					
Input Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1 MHz)	Ciss	—	135	—	pF
Output Capacitance (V_{DS} = 28 V, V_{GS} = 0, f = 1 MHz)	Coss	—	140	—	pF
Reverse Transfer Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1 MHz)	Crss	—	17	—	pF
FUNCTIONAL CHARACTERISTICS (2) (Figure 1)					
Common Source Power Gain (V _{DD} = 28 V, P _{out} = 150 W, f = 500 MHz, I _{DQ} = 2 x 100 mA)	G _{ps}	10	11.2	—	dB
Drain Efficiency (V _{DD} = 28 V, P _{out} = 150 W, f = 500 MHz, I _{DQ} = 2 x 100 mA)	η	50	55	—	%
Electrical Ruggedness (V _{DD} = 28 V, P _{out} = 150 W, f = 500 MHz, I _{DQ} = 2 x 100 mA, VSWR 30:1 at all Phase Angles)	Ψ	No	Degradation	in Output Pov	ver

1. Each side of device measured separately.

2. Measured in push-pull configuration.

深圳中立信电子有限公司 0755-82560215

Rev. V1

The RF MOSFET Line 150W, 500MHz, 28V

Figure 1. 500 MHz Test Circuit

深圳中立信电子有限公司 0755-82560215

3

The RF MOSFET Line 150W, 500MHz, 28V

TYPICAL CHARACTERISTICS

深圳中立信电子有限公司 0755-82560215

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

The RF MOSFET Line 150W, 500MHz, 28V

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

200 180 Pin = 14 W Pout, OUTPUT POWER (WATTS) 160 140 10 W 120 100 6 W 80 60 40 I_{DQ} = 2 x 100 mA f = 400 MHz 20 0 12 14 16 18 20 22 24 26 28 VDD, SUPPLY VOLTAGE (V)

Figure 6. Output Power versus Supply Voltage

Figure 7. Output Power versus Supply Voltage

深圳中立信电子有限公司 0755-82560215

MACOM

The RF MOSFET Line 150W, 500MHz, 28V

Rev. V1

TYPICAL CHARACTERISTICS

Figure 10. DC Safe Operating Area

深圳中立信电子有限公司 0755-82560215

MACOM

The RF MOSFET Line 150W, 500MHz, 28V

Rev. V1

VDD = 28 V, IDQ = 2 x 10	00 mA, P _{out} = 150 W
--------------------------	---------------------------------

f (MHz)	Z _{in} Ohms	Z _{OL} * Ohms
225	1.6 – j2.30	3.2 – j1.50
400	1.9 + j0.48	2.3 – j0.19
500	1.9 + j2.60	2.0 + j1.30

Z_{OL}* = Conjugate of the optimum load impedance into which the device operates at a given output power, voltage and frequency.

Figure 11. Series Equivalent Input/Output Impedance

深圳中立信电子有限公司 0755-82560215

7

Note: Input and output impedance values given are measured from gate to gate and drain to drain respectively.

The RF MOSFET Line 150W, 500MHz, 28V

Figure 12. 400 MHz Test Circuit

深圳中立信电子有限公司 0755-82560215

8

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

The RF MOSFET Line 150W, 500MHz, 28V

Rev. V1

Figure 13. 225 MHz Test Circuit

深圳中立信电子有限公司 0755-82560215

9

The RF MOSFET Line 150W, 500MHz, 28V

Rev. V1

Figure 14. MRF275G Component Location (500 MHz)

The RF MOSFET Line 150W, 500MHz, 28V

Rev. V1

NOTE: S-Parameter data represents measurements taken from one chip only.

f	S.	11	s	21	s	\$ ₁₂ \$ ₂₂		
MHz	\$ ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	\$ ₂₂	φ
30	0.822	-172	6.34	91	0.027	3	0.946	-173
40	0.846	-173	4.32	81	0.027	-6	0.859	-172
50	0.842	-174	3.62	79	0.027	-8	0.863	-175
60	0.838	-175	3.03	79	0.027	-5	0.923	-177
70	0.836	-175	2.76	80	0.028	-3	1.010	-178
80	0.841	-176	2.43	78	0.029	-4	1.080	-178
90	0.849	-176	2.19	74	0.029	-7	1.150	-176
100	0.857	-176	1.89	68	0.028	-13	1.110	-176
110	0.864	-176	1.66	63	0.026	-19	1.050	-177
120	0.868	-176	1.43	60	0.024	-19	0.958	-175
130	0.871	-176	1.25	59	0.023	-19	0.905	-176
140	0.874	-176	1.15	59	0.023	-17	0.914	-177
150	0.876	-176	1.11	59	0.023	-16	0.969	-178
160	0.880	-176	1.06	59	0.023	-17	1.060	-178
170	0.885	-177	1.01	55	0.023	-18	1.130	-177
180	0.891	-177	0.96	51	0.023	-23	1.190	-178
190	0.896	-177	0.87	45	0.022	-26	1.140	-179
200	0.900	-177	0.77	43	0.020	-26	1.050	-177
210	0.904	-177	0.69	42	0.018	-25	0.958	-176
220	0.907	-177	0.63	43	0.017	-23	0.924	-175
230	0.909	-177	0.60	43	0.018	-23	0.981	-178
240	0.912	-178	0.58	44	0.017	-22	0.981	-180
250	0.915	-178	0.58	42	0.017	-20	1.040	-179
260	0.918	-178	0.56	40	0.016	-20	1.150	-180
270	0.922	-178	0.54	34	0.015	-24	1.170	179
280	0.925	-179	0.49	32	0.014	-27	1.130	-180
290	0.927	-179	0.43	28	0.013	-27	1.010	-178
300	0.930	-179	0.41	30	0.013	-23	0.964	-178
310	0.932	-179	0.40	32	0.013	-14	0.936	-178
320	0.934	-180	0.39	31	0.012	-9	0.948	180
330	0.936	-180	0.35	32	0.011	-9	1.000	180
340	0.938	180	0.38	31	0.011	-12	1.070	178
350	0.941	180	0.35	28	0.011	-12	1.100	180
360	0.943	179	0.33	23	0.011	-10	1.120	-180
370	0.944	179	0.30	21	0.011	-4	1.080	180
380	0.945	179	0.29	21	0.009	1	1.020	180
390	0.947	179	0.28	22	0.008	3	0.966	-180
400	0.948	179	0.26	25	0.008	4	0.936	-179
410	0.949	178	0.26	24	0.010	5	1.010	179
420	0.951	178	0.25	25	0.010	11	1.040	170

Table 1 Common	Source S-Par	ameters (Voc	= 12 V In = 4.5 A)
	000100 0 1 01		12 1, 10 4.07.0

¹¹

The RF MOSFET Line 150W, 500MHz, 28V

Rev. V1

f MHz 430 440 450 460 470 480	S.	11	S ;	21	S.	12	S	\$22	
MHz	\$ ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	\$ ₂₂	φ	
430	0.952	178	0.25	22	0.010	19	1.080	177	
440	0.953	177	0.24	19	0.009	22	1.100	178	
450	0.955	177	0.24	16	0.008	21	1.100	179	
460	0.956	177	0.21	15	0.008	11	1.080	177	
470	0.956	177	0.20	16	0.009	16	0.992	178	
480	0.957	176	0.19	18	0.010	27	0.975	179	
490	0.958	176	0.19	18	0.010	40	0.974	178	
500	0.960	176	0.19	19	0.010	46	1.010	177	
600	0.956	175	0.18	12	0.007	49	0.940	175	
700	0.958	172	0.11	14	0.018	61	0.989	173	
800	0.962	170	0.10	12	0.029	51	0.967	172	
900	0.965	168	0.08	16	0.021	72	0.973	170	
1000	0.964	165	0.07	12	0.021	57	1.010	168	

Table 1. Common Source S-Parameters (VDS = 12 V, ID = 4.5 A) continued

深圳中立信电子有限公司 0755-82560215

The RF MOSFET Line 150W, 500MHz, 28V

Rev. V1

f	s	11	\$	21	s	12	S	22
MHz	\$ ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	\$ ₂₂	φ
30	0.829	-170	9.20	92	0.023	4	0.915	-171
40	0.858	-172	6.30	83	0.022	-4	0.834	-170
50	0.852	-173	5.28	80	0.023	-6	0.836	-174
60	0.846	-174	4.42	80	0.023	-3	0.892	-175
70	0.843	-175	4.01	81	0.024	-1	0.978	-177
80	0.847	-175	3.53	80	0.024	-2	1.050	-177
90	0.855	-175	3.18	76	0.024	-5	1.110	-176
100	0.865	-176	2.75	70	0.023	-10	1.080	-175
110	0.872	-176	2.43	65	0.022	-16	1.020	-176
120	0.874	-176	2.10	62	0.020	-16	0.932	-174
130	0.876	-176	1.84	61	0.019	-15	0.882	-175
140	0.878	-176	1.70	61	0.019	-14	0.889	-176
150	0.880	-176	1.63	61	0.019	-13	0.943	-177
160	0.883	-176	1.56	61	0.019	-13	1.030	-177
170	0.888	-177	1.49	58	0.019	-14	1.100	-176
180	0.894	-177	1.42	53	0.019	-18	1.160	-176
190	0.899	-177	1.29	47	0.018	-22	1.120	-177
200	0.902	-177	1.14	45	0.017	-24	1.030	-176
210	0.905	-177	1.02	44	0.015	-23	0.941	-175
220	0.907	-177	0.94	46	0.015	-19	0.903	-174
230	0.909	-178	0.89	45	0.015	-16	0.957	-177
240	0.912	-178	0.87	46	0.014	-15	0.961	-179
250	0.915	-178	0.86	44	0.014	-15	1.020	-178
260	0.918	-178	0.83	42	0.014	-17	1.120	-178
270	0.922	-178	0.80	36	0.013	-19	1 140	-180

Table 2. Common Source S-Parameters (V_{DS} = 24 V, I_D = 0.35 mA)

深圳中立信电子有限公司 0755-82560215

13

The RF MOSFET Line 150W, 500MHz, 28V

Rev. V1

f	S.	11	S	21	S.	12	S	22
MHz	\$ ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	\$ ₂₂	φ
280	0.925	-179	0.73	34	0.013	-20	1.110	-179
290	0.927	-179	0.65	32	0.011	-18	0.994	-177
300	0.929	-179	0.62	32	0.011	-15	0.948	-177
310	0.931	-179	0.60	34	0.010	-9	0.916	-177
320	0.932	-180	0.57	33	0.010	-6	0.934	-180
330	0.934	-180	0.53	34	0.010	-4	0.985	-180
340	0.937	180	0.56	33	0.010	-2	1.050	179
350	0.939	180	0.53	30	0.010	0	1.090	-179
360	0.941	179	0.50	25	0.010	0	1.110	-178
370	0.943	179	0.46	23	0.009	0	1.080	-179
380	0.944	179	0.44	22	0.009	2	1.010	-179
390	0.945	179	0.41	24	0.008	8	0.956	-179
400	0.946	178	0.40	27	0.008	16	0.926	-178
410	0.947	178	0.38	26	0.009	20	1.000	-180
420	0.949	178	0.38	26	0.009	22	1.040	179
430	0.950	178	0.37	23	0.009	25	1.070	179
440	0.952	177	0.36	21	0.009	26	1.090	180
450	0.953	177	0.36	18	0.009	28	1.090	-180
460	0.954	177	0.31	17	0.009	24	1.070	178
470	0.955	177	0.30	17	0.009	29	0.990	179
480	0.956	176	0.29	19	0.009	36	0.963	-179
490	0.957	176	0.29	20	0.010	45	0.959	180
500	0.958	176	0.28	20	0.010	50	0.996	178
600	0.956	175	0.24	12	0.006	90	0.924	176
700	0.959	172	0.16	13	0.019	63	0.986	174
800	0.963	170	0.14	10	0.023	63	0.963	173
900	0.968	168	0.12	11	0.026	84	0.967	171
1000	0.969	165	0.09	7	0.025	70	1.000	169

Table 2. Common Source S-Parameters (VDS = 24 V, ID = 0.35 mA) continued

深圳中立信电子有限公司 0755-82560215

The RF MOSFET Line 150W, 500MHz, 28V

Rev. V1

f	S	11	S	21	S	12 \$22		
MHz	\$ ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	\$ ₂₂	φ
30	0.834	-169	10.08	93	0.021	4	0.807	-171
40	0.863	-172	6.91	83	0.021	-4	0.828	-170
50	0.857	-173	5.79	81	0.021	-5	0.830	-173
60	0.851	-174	4.86	81	0.022	-3	0.883	-175
70	0.848	-175	4.41	82	0.022	-1	0.970	-177
80	0.852	-175	3.87	80	0.022	-1	1.040	-177
90	0.860	-175	3.49	77	0.023	-5	1.100	-176
100	0.869	-176	3.03	71	0.022	-9	1.070	-175
110	0.876	-176	2.68	66	0.021	-14	1.010	-176
120	0.878	-176	2.31	63	0.019	-14	0.923	-174
130	0.879	-176	2.03	62	0.018	-15	0.876	-175

Table 3. Common Source S-Parameters (VDS = 28 V, ID = 0.39 mA)

深圳中立信电子有限公司 0755-82560215

The RF MOSFET Line 150W, 500MHz, 28V

Rev. V1

f				21	10			
MHz	s ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	\$ ₂₂	φ
140	0.881	-176	1.87	62	0.018	-13	0.884	-176
150	0.883	-176	1.79	62	0.018	-11	0.934	-177
160	0.886	-177	1.72	62	0.018	-11	1.020	-177
170	0.890	-177	1.64	58	0.018	-12	1.090	-176
180	0.896	-177	1.56	54	0.018	-16	1.150	-176
190	0.901	-177	1.42	48	0.018	-21	1.110	-177
200	0.904	-177	1.26	46	0.017	-19	1.030	-176
210	0.907	-177	1.13	45	0.015	-14	0.938	-17
220	0.908	-177	1.03	47	0.013	-13	0.897	-174
230	0.910	-178	0.99	46	0.014	-15	0.948	-176
240	0.912	-178	0.96	47	0.014	-13	0.956	-179
250	0.916	-178	0.95	45	0.014	-10	1.020	-178
260	0.919	-178	0.93	42	0.013	-12	1.120	-178
270	0.922	-179	0.89	37	0.012	-15	1.140	-179
280	0.925	-179	0.81	35	0.012	-16	1.110	-178
290	0.927	-179	0.72	33	0.011	-16	0.988	-176
300	0.929	-179	0.69	33	0.011	-10	0.944	-177
310	0.931	-179	0.66	35	0.012	5	0.920	-177
320	0.933	-180	0.63	34	0.011	16	0.936	-180
330	0.934	-180	0.59	35	0.009	14	0.989	-180
340	0.937	180	0.62	34	0.009	3	1.050	180
350	0.939	180	0.59	31	0.010	4	1.080	-179
360	0.941	179	0.55	26	0.010	8	1.110	-178
370	0.943	179	0.51	24	0.009	11	1.070	-179
380	0.944	179	0.49	23	0.008	17	1.010	-178
390	0.945	179	0.46	25	0.008	24	0.949	-178
400	0.946	178	0.44	27	0.007	20	0.922	-178
410	0.947	178	0.43	26	0.010	19	0.995	-180
420	0.949	178	0.42	27	0.012	29	1.030	179
430	0.950	178	0.41	24	0.010	41	1.060	179
440	0.951	177	0.40	21	0.008	40	1.090	180
450	0.953	177	0.39	19	0.008	34	1.090	-180
460	0.953	177	0.35	17	0.009	26	1.070	178
470	0.954	177	0.33	18	0.010	30	0.983	179
480	0.955	176	0.32	19	0.012	43	0.964	-180
490	0.956	176	0.32	20	0.012	60	0.956	179
500	0.957	176	0.31	21	0.010	65	0.993	178
600	0.955	174	0.26	13	0.012	67	0.926	176
700	0.958	172	0.18	12	0.018	64	0.984	174
800	0.963	170	0.15	9	0.020	89	0.961	173
900	0.966	168	0.13	9	0.028	81	0.967	171
1000	0.968	165	0.10	6	0.033	73	0.997	169

Table 3. Common Source S-Parameters (VDS = 28 V, ID = 0.39 mA) continued

16

The RF MOSFET Line 150W, 500MHz, 28V

Rev. V1

Figure 16. MRF275G Test Fixture RF POWER MOSFET CONSIDERATIONS

MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (Cgd), and gate-to-source (Cgs). The PN junction formed during the fabrication of the MOSFET results in a junction capacitance from drain-to-source (Cds).

These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on datasheets. The relationships between the interterminal capacitances and those given on data sheets are shown below. The Ciss can be specified in two ways:

- 1. Drain shorted to source and positive voltage at the gate.
- Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

The Ciss given in the electrical characteristics table was measured using method 2 above. It should be noted that Ciss, Coss, Crss are measured at zero drain current and are provided for general information about the device. They are not RF design parameters and no attempt should be made to use them as such.

DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full–on condition. This on–resistance, VDS(on), occurs in the linear region of the output characteristic and is specified under specific test conditions for gate–source voltage and drain current. For MOSFETs, VDS(on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

GATE CHARACTERISTICS

The gate of the MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 109 ohms — resulting in a leakage current of a few nanoamperes. Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, VGS(th).

Gate Voltage Rating — Never exceed the gate voltage rating (or any of the maximum ratings on the front page). Exceeding the rated VGS can result in permanent damage to the oxide layer in the gate region 5

17

The RF MOSFET Line 150W, 500MHz, 28V

Gate Termination — The gates of this device are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection — These devices do not have an internalmonolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended. Using a resistor to keep the gate-to-source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate-drain capacitance. If the gate-to-source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on.

HANDLING CONSIDERATIONS

When shipping, the devices should be transported only in antistatic bags or conductive foam. Upon removal from the packaging, careful handling procedures should be adhered to. Those handling the devices should wear grounding straps and devices not in the antistatic packaging should be kept in metal tote bins. MOSFETs should be handled by the case and not by the leads, and when testing the device, all leads should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it is designed for, soldering should be done with grounded equipment.

DESIGN CONSIDERATIONS

The MRF275G is a RF power N-channel enhancement

mode field–effect transistor (FETs) designed for HF, VHF and UHF power amplifier applications. M/A-COM RF MOS-FETs feature a vertical structure with a planar design. M/A-COM Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal.

DC BIAS

The MRF275G is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF275G was characterized at IDQ = 100 mA, each side, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate bias system.

GAIN CONTROL

Power output of the MRF275G may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems.

深圳中立信电子有限公司 0755-82560215

18

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

• MACOM 通过为光学、无线和卫星网络提供突破性半导体技术,来满足社会对信息的无止境需求,从 而实现全面连通且更加安全的世界。如今,MACOM 推动着各种基础设施的建设,让数百万人在生活中每 时每刻都能方便地沟通、交易、旅行、获取信息和参与娱乐活动。我们的技术提高了移动互联网的速度和 覆盖率,让光纤网络得以向企业、家庭和数据中心传输以往无法想象的巨大通信量。MACOM 技术支持下 一代雷达,可用于空中交通管制和天气预报,从而保卫所有人的安全。MACOM 是世界领先通信基础设施 的首选合作伙伴,借助我们的顶尖团队和丰富的模拟射频、微波、毫米波和光子半导体产品,可帮助这些 公司解决网络容量、信号覆盖、能源效率和现场可靠性等领域内的最复杂挑战。MACOM 是半导体行业的 支柱型企业,在 60 多年的蓬勃发展历程中,公司敢于采用大胆的技术手段,为客户提供真正的竞争优势并 为投资者带来卓越的价值,致力于构筑更加美好的世界。

射频功率产品

- 光电子
- 光波组件
- 放大器
- 二极管
- 网络连接解决方案
- 交叉点和信号调理器
- 频率转换
- 控制产品
- 无源器件
- SDI 产品
- 频率生成
- HDcctv 设备
- 通信处理器

应用

- 无线网络和通信
- 光网络
- 射频能量
- 工业、科学和医疗
- 有线宽带
- 广播视频
- 企业解决方案
- 监控

深圳市中立信电子科技有限公司主营 M/A-COM 全系列产品 为你提供可靠的产品和优质的服务.

深圳市中立信电子科技有限公司 SHENZHEN ZLX ELECTRONIC TECHNOLOGY CO.,LTD 公司地址: 深圳市福田区福田街道彩田路彩虹新都彩荟阁 7A 室 Room 7A Rainbow Xindu Building Futian District Shenzhen China 公司总探到1997年395668書 电子有限公司 0755-82560215

Rev. V1

The RF MOSFET Line 150W, 500MHz, 28V

PACKAGE DIMENSIONS

深圳中立信电子有限公司 0755-82560215

Rev. V1

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using pr selling MACOM products for use in such applications do so at their own risk and agree to fully independent of the products for use in such improper use of sale. O 2 0 0 2 1 0

²⁰

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.