

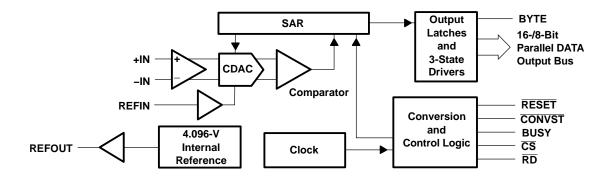
16-BIT, 1.25-MSPS, UNIPOLAR PSEUDO-DIFFERENTIAL INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE

FEATURES

- Unipolar Pseudo-Differential Input, 0 V to V_{ref}
- 16-Bit NMC at 1.25 MSPS
- ±2 LSB INL Max, -1/+1.5 LSB DNL
- 86 dB SNR, -90 dB THD at 100 kHz Input
- Zero Latency
- Internal 4.096-V Reference
- High-Speed Parallel Interface
- Single 5-V Analog Supply
- Wide I/O Supply: 2.7 V to 5.25 V
- Low Power: 155 mW at 1.25 MHz Typ
- Pin Compatible With ADS8411/8401
- 48-Pin TQFP Package

APPLICATIONS

- DWDM
- Instrumentation
- High-Speed, High-Resolution, Zero Latency Data Acquisition Systems
- Transducer Interface
- Medical Instruments
- Communications


DESCRIPTION

The ADS8405 is a 16-bit, 1.25-MHz A/D converter with an internal 4.096-V reference. The device includes a 16-bit capacitor-based SAR A/D converter with inherent sample and hold. The ADS8405 offers a full 16-bit interface and an 8-bit option where data is read using two 8-bit read cycles if necessary.

The ADS8405 has a unipolar pseudo-differential input. It is available in a 48-lead TQFP package and is characterized over the industrial -40°C to 85°C temperature range.

High Speed SAR Converter Family

Type/Speed	500 kHz	~600 kHz	750 kHz	1 MHz	1.25 MHz	2 MHz	3 MHz	4 MHz
18-Bit Pseudo-Diff	ADS8383	ADS8381						
16-Bit Pseudo-Dili		ADS8380 (S)						
18-Bit Pseudo-Bipolar, Fully Diff		ADS8382 (S)						
16-Bit Pseudo-Diff			ADS8371		ADS8401/05	ADS8411		
16-Bit Pseudo-Bipolar, Fully Diff					ADS8402/06	ADS8412		
14-Bit Pseudo-Diff					ADS7890 (S)		ADS7891	
12-Bit Pseudo-Diff				ADS7886				ADS7881

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION⁽¹⁾

MODEL	MAXIMUM INTEGRAL LINEARITY (LSB)	MAXIMUM DIFFERENTIAL LINEARITY (LSB)	NO MISSING CODES RESOLUTION (BIT)	PACKAGE TYPE	PACKAGE DESIGNATOR	TEMPERATURE RANGE	ORDERING INFORMATION	TRANSPORT MEDIA QUANTITY
ADS8405I	-4 to +4	-2 to +2	15	15 48 Pin TQFP PFB -40°C to 85°C		48 Pin TQFP	ADS8405IPFBT	Tape and reel 250
AD364031	-4 to +4	-2 10 +2	15	401 III 1Q11	FIB	-40 C to 65 C	ADS8405IPFBR	Tape and reel 1000
ADS8405IB	2 to 12	-1 to +1.5	16	49 Din TOED	48 Pin TQFP PFB		ADS8405IBPFBT	Tape and reel 250
AD36403IB	3 -2 to +2 -1 to		16	40 FIII IQFF	FFB	–40°C to 85°C	ADS8405IBPFBR	Tape and reel 1000

⁽¹⁾ For the most current specifications and package information, refer to our website at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted(1)

				UNIT
		+IN to AGNE)	-0.4 V to +VA + 0.1 V
		-IN to AGND	1	-0.4 V to 0.5 V
	Voltage	+VA to AGNI)	-0.3 V to 7 V
		+VBD to BD0	GND	-0.3 V to 7 V
		+VA to +VBD)	−0.3 V to 2.55 V
	Digital input volta	ge to BDGND		-0.3 V to +VBD + 0.3 V
	Digital output volt	tage to BDGN	D	-0.3 V to +VBD + 0.3 V
T _A	Operating free-ai	r temperature	range	−40°C to 85°C
T _{stg}	Storage temperat	ture range		−65°C to 150°C
	Junction tempera	ture (T _J max)		150°C
	TOED pookogo	Power dissip	ation	$(T_{J}Max - T_{A})/\theta_{JA}$
	TQFP package θ _{JA} thermal i		mpedance	86°C/W
	Load tomporature	Vapor phase (60 sec)		215°C
	Lead temperature, soldering		Infrared (15 sec)	220°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SPECIFICATIONS

 $T_{A} = -40^{\circ}\text{C to } 85^{\circ}\text{C}, \text{ +VA} = 5 \text{ V}, \text{ +VBD} = 3 \text{ V or 5 V}, V_{ref} = 4.096 \text{ V}, f_{SAMPLE} = 1.25 \text{ MHz (unless otherwise noted)}$

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALC	G INPUT					<u> </u>	
	Full-scale input voltage (1)	+IN - (-IN)	0		V_{ref}	V
	Alexalista innest caltaga		+IN	-0.2		V _{ref} + 0.2	W
	Absolute input voltage		-IN	-0.2		0.2	V
	Input capacitance				25		pF
	Input leakage current				0.5		nA
SYSTE	M PERFORMANCE					<u> </u>	
	Resolution				16		Bits
	Nie odrożenie oda	ADS8405I		15			D'i-
	No missing codes	ADS8405IB		16			Bits
	1 (2)(2)	ADS8405I		-4	±2	4	1.00
INL	Integral linearity (2)(3)	ADS8405IB		-2	±1	2	LSB
DNII	Differential Paradi	ADS8405I		-2	±1	2	1.00
DNL	Differential linearity	ADS8405IB		-1	±0.75	1.5	LSB
_	O" (4)	ADS8405I		-3	±1	3	mV
Eo	Offset error ⁽⁴⁾	ADS8405IB		-1.5	±0.5	1.5	mV
_	(4)(5)	ADS8405I		-0.15		0.15	27.50
E_G	Gain error ⁽⁴⁾⁽⁵⁾	ADS8405IB		-0.098		0.98	%FS
	Noise				60		μV RMS
	DC Power supply rejection	on ratio	At FFFFh output code, +VA = 4.75 V to 5.25 V, V _{ref} = 4.096 V ⁽⁴⁾		2		LSB
SAMPL	ING DYNAMICS					"	
	Conversion time			500		650	ns
	Acquisition time			150			ns
	Throughput rate					1.25	MHz
	Aperture delay				2		ns
	Aperture jitter				25		ps
	Step response				100		ns
	Overvoltage recovery				100		ns
DYNAN	IIC CHARACTERISTICS					"	
TUD	Total bassassia statestics	(6)	VIN = 4 V _{p-p} at 100 kHz		-90		dB
THD	Total harmonic distortion	(6)	VIN = 4 V _{p-p} at 500 kHz		-88.5		dB
SNR	Signal-to-noise ratio		VIN = 4 V _{p-p} at 100 kHz		86		dB
SINAD	Signal-to-noise + distortion	on	VIN = 4 V _{p-p} at 100 kHz		85		dB
CEDD	Consideration for a discount		VIN = 4 V _{p-p} at 100 kHz		90		dB
SFDR	DR Spurious free dynamic range		VIN = 4 V _{p-p} at 500 kHz		88		dB
	-3dB Small signal bandw	idth			5		MHz
EXTER	NAL VOLTAGE REFEREI	NCE INPUT				L	
	Reference voltage at RE	FIN, V _{ref}		2.5	4.096	4.2	V
	Reference resistance (7)				500		kΩ

⁽¹⁾ Ideal input span, does not include gain or offset error.

LSB means least significant bit

This is endpoint INL, not best fit.

Measured relative to an ideal full-scale input (+IN – (-IN)) of 4.096 V. This specification does not include the internal reference voltage error and drift.

Calculated on the first nine harmonics of the input frequency.

⁽⁶⁾ (7) Can vary ±20%

SPECIFICATIONS (continued)

 $T_A = -40$ °C to 85°C, +VA = 5 V, +VBD = 3 V or 5 V, $V_{ref} = 4.096$ V, $f_{SAMPLE} = 1.25$ MHz (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
INTER	NAL REFERENCE OUTPU	T	·					
	Internal reference start-up	o time	From 95% (+VA), with 1-µF storage capacitor			120	ms	
	V _{ref} range		IOUT = 0	4.065	4.096	4.13	V	
	Source current		Static load			10	μA	
	Line regulation		+VA = 4.75 V to 5.25 V		0.6		mV	
	Drift		IOUT = 0		36		PPM/C	
DIGITA	AL INPUT/OUTPUT							
	Logic family - CMOS							
V_{IH}	High-level input voltage		I _{IH} = 5 μA	+VBD - 1	1 +VBD + 0.3			
V_{IL}	Low-level input voltage		I _{IL} = 5 μA	-0.3		0.8	.8 V	
V_{OH}	High-level output voltage		I _{OH} = 2 TTL loads	+VBD - 0.6		+VBD	,	
V_{OL}	Low-level output voltage		I _{OL} = 2 TTL loads	0		0.4		
	Data format - straight bina	ary						
POWE	R SUPPLY REQUIREMEN	TS						
	Dower aunaly voltage	+VBD		2.7	3	5.25	V	
	Power supply voltage	+VA		4.75	5	5.25	V	
	+VA Supply current (8)		f _s = 1.25 MHz		31	34	mA	
	Power dissipation ⁽⁸⁾		f _s = 1.25 MHz		155	170	mW	
TEMP	ERATURE RANGE							
	Operating free-air			-40		85	°C	

⁽⁸⁾ This includes only VA+ current. +VBD current is typically 1 mA with 5-pF load capacitance on output pins.

TIMING CHARACTERISTICS

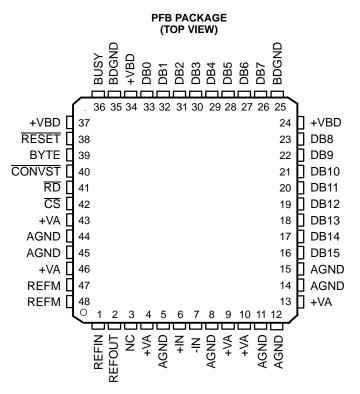
All specifications typical at -40° C to 85° C, +VA = +VBD = 5 V (1)(2)(3)

	PARAMETER	MIN	TYP	MAX	UNIT
t _{CONV}	Conversion time	500		650	ns
t _{ACQ}	Acquisition time	150			ns
t _{pd1}	CONVST low to BUSY high		40		ns
t _{pd2}	Propagation delay time, end of conversion to BUSY low		5		ns
t _{w1}	Pulse duration, CONVST low	20			ns
t _{su1}	Setup time, CS low to CONVST low	0			ns
t _{w2}	Pulse duration, CONVST high	20			ns
	CONVST falling edge jitter			10	ps
t _{w3}	Pulse duration, BUSY signal low	Min(t _{ACQ})			ns
t _{w4}	Pulse duration, BUSY signal high		610		ns
t _{h1}	Hold time, first data bus data transition (RD low, or CS low for read cycle, or BYTE input changes) after CONVST low	40			ns
t _{d1}	Delay time, \overline{CS} low to \overline{RD} low (or BUSY low to \overline{RD} low when $\overline{CS} = 0$)	0			ns
t _{su2}	Setup time, RD high to CS high	0			ns
t _{w5}	Pulse duration, $\overline{\text{RD}}$ low	50			ns
t _{en}	Enable time, $\overline{\text{RD}}$ low (or $\overline{\text{CS}}$ low for read cycle) to data valid			20	ns
t _{d2}	Delay time, data hold from RD high	0			ns
t _{d3}	Delay time, BYTE rising edge or falling edge to data valid	2		20	ns
t _{w6}	Pulse duration, RD high	20			ns
t _{w7}	Pulse duration, $\overline{\text{CS}}$ high	20			ns
t _{h2}	Hold time, last $\overline{\text{RD}}$ (or $\overline{\text{CS}}$ for read cycle) rising edge to $\overline{\text{CONVST}}$ falling edge	50			ns
t _{su3}	Setup time, BYTE transition to RD falling edge	0			ns
t _{h3}	Hold time, BYTE transition to RD falling edge	0			ns
t _{dis}	Disable time, RD high (CS high for read cycle) to 3-stated data bus			20	ns
t _{d5}	Delay time, end of conversion to MSB data valid			10	ns
t _{su4}	Byte transition setup time, from BYTE transition to next BYTE transition	50			ns
t _{d6}	Delay time, CS rising edge to BUSY falling edge	50			ns
t _{d7}	Delay time, BUSY falling edge to CS rising edge	50			ns
su(AB)	Setup time, from the falling edge of CONVST (used to start the valid conversion) to the next falling edge of CONVST (when CS = 0 and CONVST used to abort) or to the next falling edge of CS (when CS is used to abort)	60		500	ns
t _{su5}	Setup time, falling edge of CONVST to read valid data (MSB) from current conversion	$MAX(t_{CONV}) + MAX(t_{d5})$			ns
t _{h4}	Hold time, data (MSB) from previous conversion hold valid from falling edge of CONVST		MIN	(t _{CONV})	ns

⁽¹⁾ All input signals are specified with $t_r = t_f = 5$ ns (10% to 90% of +VBD) and timed from a voltage level of $(V_{IL} + V_{IH})/2$. (2) See timing diagrams.

⁽²⁾ See timing diagrams.(3) All timings are measured with 20-pF equivalent loads on all data bits and BUSY pins.

TIMING CHARACTERISTICS

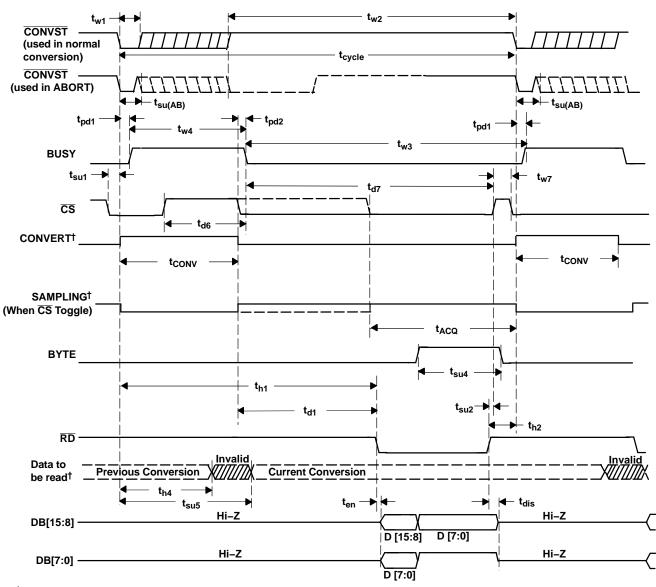

All specifications typical at -40° C to 85° C, +VA = 5 V, +VBD = 3 V⁽¹⁾⁽²⁾⁽³⁾

	PARAMETER	MIN	TYP MAX	UNIT
t _{CONV}	Conversion time	500	650	ns
t _{ACQ}	Acquisition time	150		ns
t _{pd1}	CONVST low to BUSY high		50	ns
t _{pd2}	Propagation delay time, end of conversion to BUSY low		10	ns
t _{w1}	Pulse duration, CONVST low	20		ns
t _{su1}	Setup time, $\overline{\text{CS}}$ low to $\overline{\text{CONVST}}$ low	0		ns
t _{w2}	Pulse duration, CONVST high	20		ns
	CONVST falling edge jitter		10	ps
t _{w3}	Pulse duration, BUSY signal low	Min(t _{ACQ})		ns
t _{w4}	Pulse duration, BUSY signal high		610	ns
t _{h1}	Hold time, first data bus transition (RD low, or CS low for read cycle, or BYTE input changes) after CONVST low	40		ns
t _{d1}	Delay time, \overline{CS} low to \overline{RD} low (or BUSY low to \overline{RD} low when $\overline{CS} = 0$)	0		ns
t _{su2}	Setup time, RD high to CS high	0		ns
t _{w5}	Pulse duration, RD low	50		ns
t _{en}	Enable time, RD low (or CS low for read cycle) to data valid		30	ns
t _{d2}	Delay time, data hold from RD high	0		ns
t _{d3}	Delay time, BYTE rising edge or falling edge to data valid	2	30	ns
t _{w6}	Pulse duration, RD high	20		ns
t _{w7}	Pulse duration, CS high	20		ns
t _{h2}	Hold time, last $\overline{\text{RD}}$ (or $\overline{\text{CS}}$ for read cycle) rising edge to $\overline{\text{CONVST}}$ falling edge	50		ns
t _{su3}	Setup time, BYTE transition to RD falling edge	0		ns
t _{h3}	Hold time, BYTE transition to RD falling edge	0		ns
t _{dis}	Disable time, RD high (CS high for read cycle) to 3-stated data bus		30	ns
t _{d5}	Delay time, end of conversion to MSB data valid		20	ns
t _{su4}	Byte transition setup time, from BYTE transition to next BYTE transition	50		ns
t _{d6}	Delay time, CS rising edge to BUSY falling edge	50		ns
t _{d7}	Delay time, BUSY falling edge to CS rising edge	50		ns
t _{su(AB)}	Setup time, from the falling edge of $\overline{\text{CONVST}}$ (used to start the valid conversion) to the next falling edge of $\overline{\text{CONVST}}$ (when $\overline{\text{CS}} = 0$ and $\overline{\text{CONVST}}$ used to abort) or to the next falling edge of $\overline{\text{CS}}$ (when $\overline{\text{CS}}$ is used to abort)	70	500	ns
t _{su5}	Setup time, falling edge of CONVST to read valid data (MSB) from current conversion	$MAX(t_{CONV}) + MAX(t_{d5})$		ns
t _{h4}	Hold time, data (MSB) from previous conversion hold valid from falling edge of CONVST		MIN(t _{CONV})	ns

 ⁽¹⁾ All input signals are specified with t_r = t_f = 5 ns (10% to 90% of +VBD) and timed from a voltage level of (V_{IL} + V_{IH})/2.
 (2) See timing diagrams.
 (3) All timings are measured with 10-pF equivalent loads on all data bits and BUSY pins.

PIN ASSIGNMENTS

NC - No connection



Terminal Functions

NAME	NO.	1/0		DESCRIPTION						
AGND	5, 8, 11, 12, 14, 15, 44, 45	_	Analog ground							
BDGND	25, 35	-	Digital ground for bus interface digital supply							
BUSY	36	0	Status output. High when a co	nversion is in progress.						
BYTE	39	I	Byte select input. Used for 8-b significant bits is folded back to		ck 1: Low byte D[7:0] of the 16 most ignificant pins DB[15:8].					
CONVST	40	I	Convert start. The falling edge period.	of this input ends the acqui	sition period and starts the hold					
CS	42	I	Chip select. The falling edge o	f this input starts the acquis	ition period.					
Data Dua			8-Bit B	Bus	16-Bit Bus					
Data Bus			BYTE = 0	BYTE = 1	BYTE = 0					
DB15	16	0	D15 (MSB)	D7	D15 (MSB)					
DB14	17	0	D14	D6	D14					
DB13	18	0	D13	D5	D13					
DB12	19	0	D12	D4	D12					
DB11	20	0	D11	D3	D11					
DB10	21	0	D10	D2	D10					
DB9	22	0	D9	D1	D9					
DB8	23	0	D8	D0 (LSB)	D8					
DB7	26	0	D7	All ones	D7					
DB6	27	0	D6	All ones	D6					
DB5	28	0	D5	All ones	D5					
DB4	29	0	D4	All ones	D4					
DB3	30	0	D3	All ones	D3					
DB2	31	0	D2	All ones	D2					
DB1	32	0	D1	All ones	D1					
DB0	33	0	D0 (LSB)	All ones	D0 (LSB)					
-IN	7	1	Inverting input channel	-						
+IN	6	I	Noninverting input channel							
NC	3	-	No connection							
REFIN	1	I	Reference input							
REFM	47, 48	I	Reference ground							
REFOUT	2	0	Reference output. Add 1-µF capacitor between the REFOUT pin and REFM pin when the internal reference is used.							
RESET	38	Ι	Current conversion is aborted and output latches are cleared (set to zeros) when this pin is asserted low. RESET works independently of CS.							
RD	41	_	Synchronization pulse for the parallel output. When $\overline{\text{CS}}$ is low, this serves as the output enable and puts the previous conversion result on the bus.							
+VA	4, 9, 10, 13, 43, 46	-	Analog power supplies, 5-V dc							
+VBD	24, 34, 37	-	Digital power supply for bus							

TIMING DIAGRAMS

[†]Signal internal to device

Figure 1. Timing for Conversion and Acquisition Cycles With CS and RD Toggling

TIMING DIAGRAMS (continued)

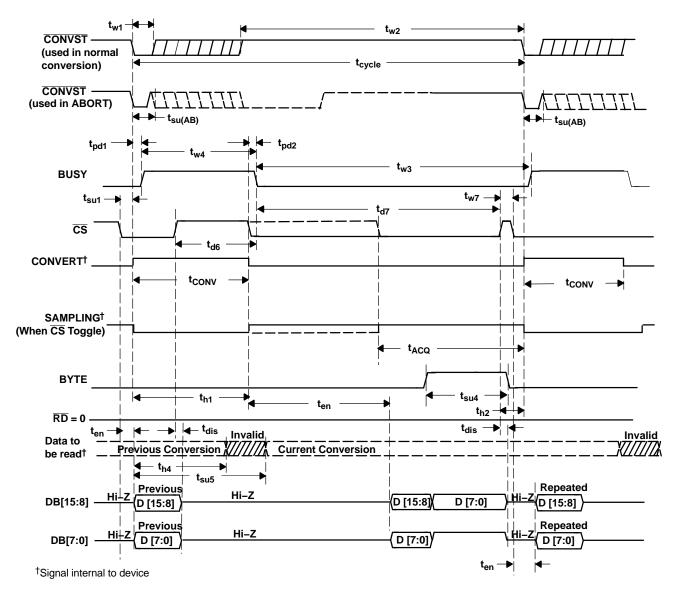


Figure 2. Timing for Conversion and Acquisition Cycles With $\overline{\text{CS}}$ Toggling, $\overline{\text{RD}}$ Tied to BDGND

TIMING DIAGRAMS (continued)

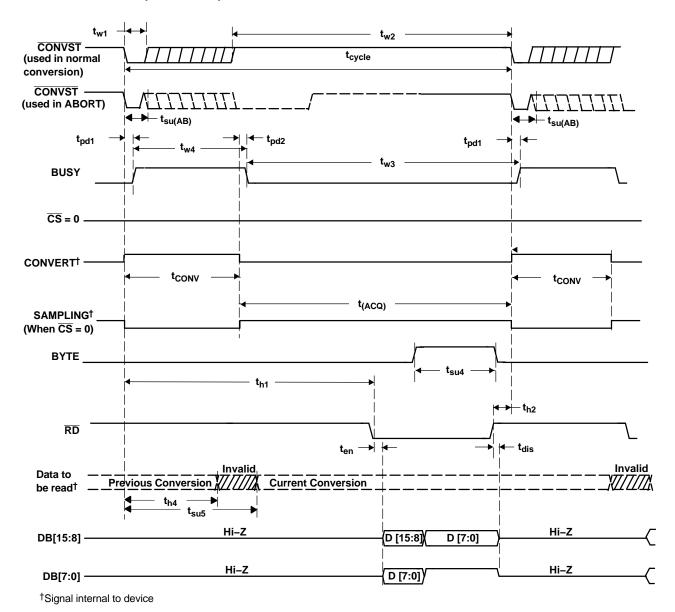
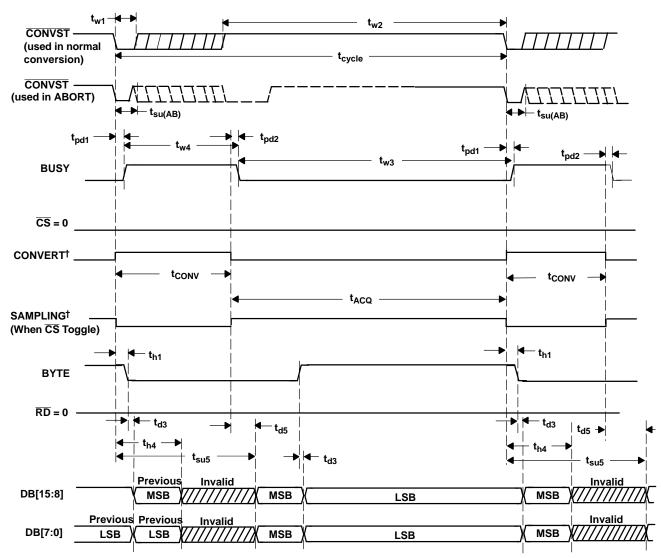



Figure 3. Timing for Conversion and Acquisition Cycles With $\overline{\text{CS}}$ Tied to BDGND, $\overline{\text{RD}}$ Toggling

TIMING DIAGRAMS (continued)

[†]Signal internal to device

Figure 4. Timing for Conversion and Acquisition Cycles With $\overline{\text{CS}}$ and $\overline{\text{RD}}$ Tied to BDGND—Auto Read

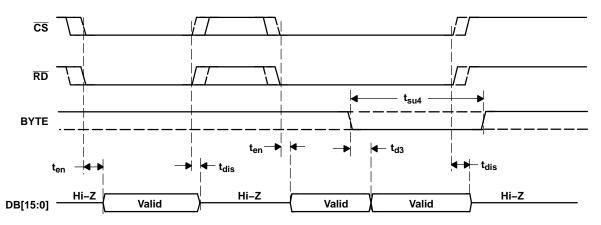


Figure 5. Detailed Timing for Read Cycles

TYPICAL CHARACTERISTICS

At -40° C to 85° C, +VA = 5 V, +VBD = 5 V, REFIN = 4.096 V (internal reference used) and f_{sample} = 1.25 MHz (unless otherwise noted)

HISTOGRAM (DC Code Spread) HALF SCALE 131071 CONVERSIONS

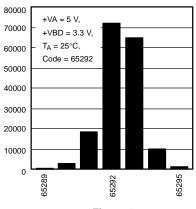


Figure 6.

SIGNAL-TO-NOISE AND DISTORTION vs FREE-AIR TEMPERATURE

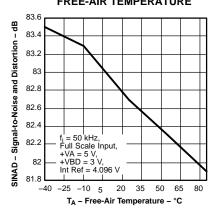


Figure 8.

SIGNAL-TO-NOISE RATIO vs FREE-AIR TEMPERATURE

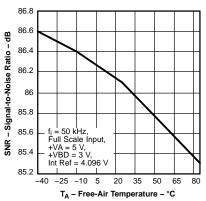


Figure 7.

EFFECTIVE NUMBER OF BITS vs FREE-AIR TEMPERATURE

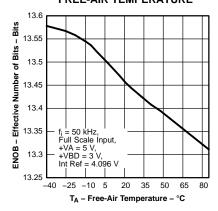


Figure 9.

SPURIOUS FREE DYNAMIC RANGE vs FREE-AIR TEMPERATURE

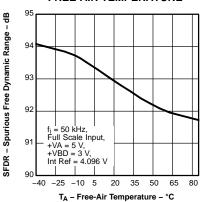


Figure 10.

SIGNAL-TO-NOISE RATIO VS INPUT FREQUENCY

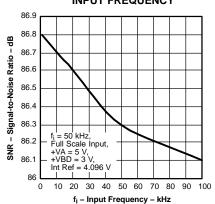


Figure 12.

SIGNAL-TO-NOISE AND DISTORTION VS INPUT FREQUENCY

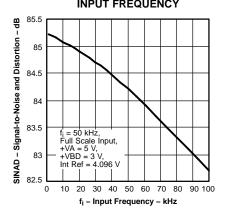


Figure 14.

TOTAL HARMONIC DISTORTION vs FREE-AIR TEMPERATURE

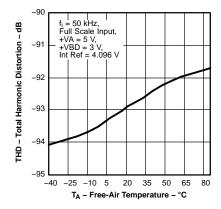


Figure 11.

EFFECTIVE NUMBER OF BITS VS INPUT FREQUENCY

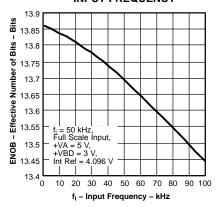


Figure 13.

SPURIOUS FREE DYNAMIC RANGE vs INPUT FREQUENCY

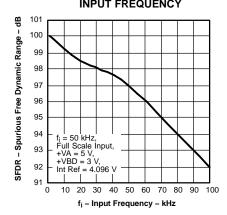


Figure 15.

TOTAL HARMONIC DISTORTION VS INPUT FREQUENCY

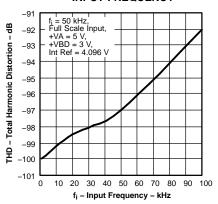


Figure 16.

GAIN ERROR vs SUPPLY VOLTAGE

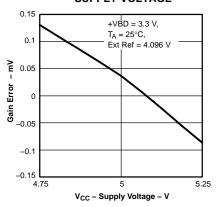


Figure 18.

INTERNAL VOLTAGE REFERENCE vs FREE-AIR TEMPERATURE

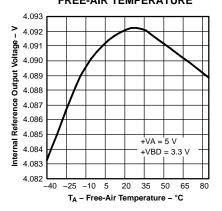


Figure 20.

SUPPLY CURRENT vs SAMPLE RATE

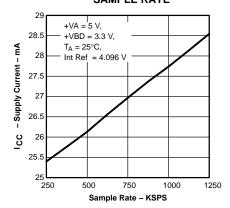


Figure 17.

OFFSET ERROR VS SUPPLY VOLTAGE

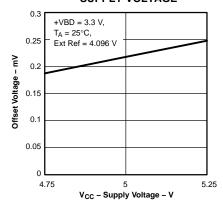


Figure 19.

GAIN ERROR vs FREE-AIR TEMPERATURE

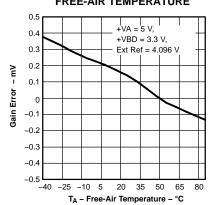


Figure 21.

OFFSET ERROR vs FREE-AIR TEMPERATURE

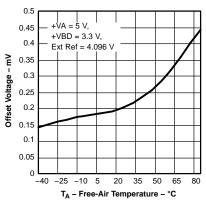


Figure 22.

DIFFERENTIAL NONLINEARITY vs FREE-AIR TEMPERATURE

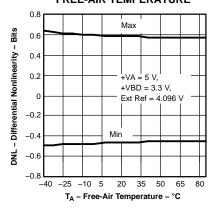


Figure 24.

DIFFERENTIAL NONLINEARITY VS REFERENCE VOLTAGE

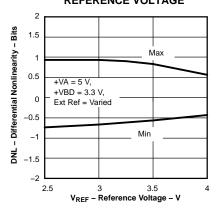


Figure 26.

SUPPLY CURRENT vs FREE-AIR TEMPERATURE

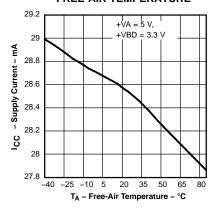


Figure 23.

INTEGRAL NONLINEARITY vs FREE-AIR TEMPERATURE

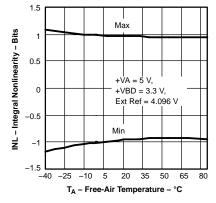


Figure 25.

INTEGRAL NONLINEARITY vs REFERENCE VOLTAGE

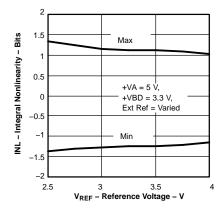


Figure 27.

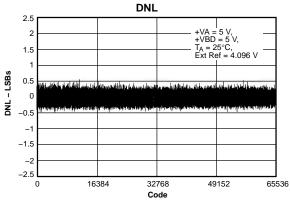


Figure 28.

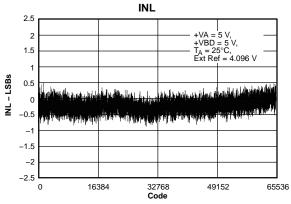
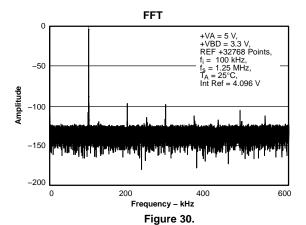



Figure 29.

APPLICATION INFORMATION

MICROCONTROLLER INTERFACING

ADS8405 to 8-Bit Microcontroller Interface

Figure 31 shows a parallel interface between the ADS8405 and a typical microcontroller using the 8-bit data bus. The BUSY signal is used as a falling-edge interrupt to the microcontroller.

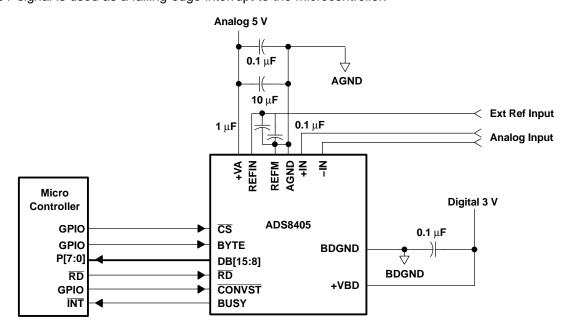


Figure 31. ADS8405 Application Circuitry (Using an External Reference)

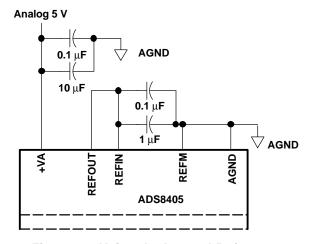


Figure 32. Using the Internal Reference

PRINCIPLES OF OPERATION

The ADS8405 is a high-speed successive approximation register (SAR) analog-to-digital converter (ADC). The architecture is based on charge redistribution, which inherently includes a sample/hold function. See Figure 31 for the application circuit for the ADS8405.

The conversion clock is generated internally. The conversion time of 650 ns is capable of sustaining a 1.25-MHz throughput.

PRINCIPLES OF OPERATION (continued)

The analog input is provided to two input pins: +IN and -IN. When a conversion is initiated, the differential input on these pins is sampled on the internal capacitor array. While a conversion is in progress, both inputs are disconnected from any internal function.

REFERENCE

The ADS8405 can operate with an external reference with a range from 2.5 V to 4.2 V. A 4.096-V internal reference is included. When an internal reference is used, pin 2 (REFOUT) should be connected to pin 1 (REFIN) with a 0.1-µF decoupling capacitor and a 1-µF storage capacitor between pin 2 (REFOUT) and pins 47 and 48 (REFM) (see Figure 32). The internal reference of the converter is double buffered. If an external reference is used, the second buffer provides isolation between the external reference and the CDAC. This buffer is also used to recharge all of the capacitors of the CDAC during conversion. Pin 2 (REFOUT) can be left unconnected (floating) if an external reference is used.

ANALOG INPUT

When the converter enters hold mode, the voltage difference between the +IN and -IN inputs is captured on the internal capacitor array. The voltage on the –IN input is limited between –0.2 V and 0.2 V, allowing the input to reject small signals which are common to both the +IN and –IN inputs. The +IN input has a range of –0.2 V to V_{ref} + 0.2 V. The input span (+IN – (–IN)) is limited to 0 V to V_{ref} .

The input current on the analog inputs depends upon a number of factors: sample rate, input voltage, and source impedance. Essentially, the current into the ADS8405 charges the internal capacitor array during the sample period. After this capacitance has been fully charged, there is no further input current. The source of the analog input voltage must be able to charge the input capacitance (25 pF) to an 16-bit settling level within the acquisition time (150 ns) of the device. When the converter goes into hold mode, the input impedance is greater than 1 G Ω .

Care must be taken regarding the absolute analog input voltage. To maintain the linearity of the converter, the +IN and -IN inputs and the span (+IN – (-IN)) should be within the limits specified. Outside of these ranges, the converter's linearity may not meet specifications. To minimize noise, low bandwidth input signals with low-pass filters should be used.

Care should be taken to ensure that the output impedance of the sources driving the +IN and -IN inputs are matched. If this is not observed, the two inputs could have different setting times. This may result in offset error, gain error, and linearity error which varies with temperature and input voltage. A typical input circuit using TI's THS4031 is shown in Figure 33.

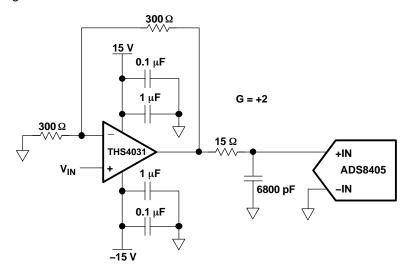


Figure 33. Using the THS4031 with the ADS8405

PRINCIPLES OF OPERATION (continued) DIGITAL INTERFACE

Timing And Control

See the timing diagrams in the specifications section for detailed information on timing signals and their requirements.

The ADS8405 uses an internal oscillator generated clock which controls the conversion rate and in turn the throughput of the converter. No external clock input is required.

Conversions are initiated by bringing the $\overline{\text{CONVST}}$ pin low for a minimum of 20 ns (after the 20 ns minimum requirement has been met, the $\overline{\text{CONVST}}$ pin can be brought high) while $\overline{\text{CS}}$ is low. The ADS8405 switches from the sample to the hold mode on the falling edge of the $\overline{\text{CONVST}}$ command. A clean and low jitter falling edge of this signal is important to the performance of the converter. The BUSY output is brought high after $\overline{\text{CONVST}}$ goes low. BUSY stays high throughout the conversion process and returns low when the conversion has ended.

Sampling starts as soon as the conversion is over when \overline{CS} is tied low or starts with the falling edge of \overline{CS} when BUSY is low.

Both \overline{RD} and \overline{CS} can be high during and before a conversion with one exception (\overline{CS} must be low when \overline{CONVST} goes low to initiate a conversion). Both the \overline{RD} and \overline{CS} pins are brought low in order to enable the parallel output bus with the conversion.

Reading Data

The ADS8405 outputs full parallel data in straight binary format as shown in Table 1. The parallel output is active when \overline{CS} and \overline{RD} are both low. There is a minimal quiet zone requirement around the falling edge of \overline{CONVST} . This is 50 ns prior to the falling edge of \overline{CONVST} and 40 ns after the falling edge. No data read should be attempted within this zone. Any other combination of \overline{CS} and \overline{RD} sets the parallel output to 3-state. BYTE is used for multiword read operations. BYTE is used whenever lower bits of the converter result are output on the higher byte of the bus. Refer to Table 1 for ideal output codes.

DESCRIPTION ANALOG VALUE DIGITAL OUTPUT Full scale range +V_{ref} STRAIGHT BINARY (+V_{ref})/65536 Least significant bit (LSB) **BINARY CODE HEX CODE** Full scale $(+V_{ref}) - 1 LSB$ 1111 1111 1111 1111 **FFFF** 1000 0000 0000 0000 Midscale (+V_{ref})/2 8000 Midscale - 1 LSB $(+V_{ref})/2 - 1 LSB$ 0111 1111 1111 1111 7FFF 0 V 0000 0000 0000 0000 0000

Table 1. Ideal Input Voltages and Output Codes

The output data is a full 16-bit word (D15 – D0) on the DB15 – DB0 pins (MSB-LSB) if BYTE is low.

The result may also be read on an 8-bit bus for convenience. This is done by using only pins DB15 – DB8. In this case two reads are necessary: the first as before, leaving BYTE low and reading the 8 most significant bits on pins DB15 – DB8, then bringing BYTE high. When BYTE is high, the low bits (D7 – D0) appear on pins DB15 – D8.

These multiword read operations can be done with multiple active RD (toggling) or with RD tied low for simplicity.

Conversion Data Readout

BYTE	DATA READ OUT							
BIIC	DB15-DB8 Pins	DB7-DB0 Pins						
High	D7-D0	All one's						
Low	D15-D8	D7-D0						

RESET

RESET is an asynchronous active low input signal (that works independently of \overline{CS}). Minimum \overline{RESET} low time is 25 ns. The current conversion is aborted no later than 50 ns after the converter is in reset mode. In addition, all output latches are cleared (set to zero's) after \overline{RESET} . The converter goes back to normal operation mode no later than 20 ns after the \overline{RESET} input is brought high.

The converter starts the first sampling period 20 ns after the rising edge of RESET. Any sampling period except for the one immediately after a RESET is started with the falling edge of the previous BUSY signal or the falling edge of CS, whichever is later.

Another way to reset the device is through the use of the combination of \overline{CS} and \overline{CONVST} . This is useful when the dedicated \overline{RESET} pin is tied to the system reset but there is a need to abort only the conversion in a specific converter. Since the BUSY signal is held high during the conversion, either one of these conditions triggers an internal self-clear reset to the converter just the same as a reset via the dedicated \overline{RESET} pin. The reset does not have to be cleared as for the dedicated \overline{RESET} pin. A reset can be started with either of the two following steps.

- Issue a CONVST when CS is low and a conversion is in progress. The falling edge of CONVST must satisfy
 the timing as specified by the timing parameter t_{su(AB)} specified in the timing characteristics table to ensure a
 reset. The falling edge of CONVST starts a reset. The timing is the same as a reset using the dedicated
 RESET pin except the instance of the falling edge is replaced by the falling edge of CONVST.
- Issue a S while a conversion is in progress. The falling edge of S must satisfy the timing as specified by the timing parameter t_{su(AB)} specified in the timing characteristics table to ensure a reset. The falling edge of S causes a reset. The timing is the same as a reset using the dedicated RESET pin except the instance of the falling edge is replaced by the falling edge of S.

POWER-ON INITIALIZATION

RESET is not required after power on. An internal power-on reset circuit generates the reset. To ensure that all of the registers are cleared, the three conversion cycles must be given to the converter after power on.

LAYOUT

For optimum performance, care should be taken with the physical layout of the ADS8405 circuitry.

As the ADS8405 offers single-supply operation, it is often used in close proximity with digital logic, microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design and the higher the switching speed, the more difficult it is to achieve good performance from the converter.

The basic SAR architecture is sensitive to glitches or sudden changes on the power supply, reference, ground connections, and digital inputs that occur just prior to latching the output of the analog comparator. Thus, driving any single conversion for an n-bit SAR converter, there are at least n *windows* in which large external transient voltages can affect the conversion result. Such glitches might originate from switching power supplies, nearby digital logic, or high power devices.

The degree of error in the digital output depends on the reference voltage, layout, and the exact timing of the external event.

On average, the ADS8405 draws very little current from an external reference, as the reference voltage is internally buffered. If the reference voltage is external and originates from an op amp, make sure that it can drive the bypass capacitor or capacitors without oscillation. A 0.1-µF bypass capacitor and a 1-µF storage capacitor are recommended from pin 1 (REFIN) directly to pin 48 (REFM). REFM and AGND should be shorted on the same ground plane under the device.

The AGND and BDGND pins should be connected to a clean ground point. In all cases, this should be the analog ground. Avoid connections which are close to the grounding point of a microcontroller or digital signal processor. If required, run a ground trace directly from the converter to the power supply entry point. The ideal layout consists of an analog ground plane dedicated to the converter and associated analog circuitry.

As with the AGND connections, +VA should be connected to a 5-V power supply plane or trace that is separate from the connection for digital logic until they are connected at the power entry point. Power to the ADS8405 should be clean and well bypassed. A 0.1-µF ceramic bypass capacitor should be placed as close to the device as possible. See Table 2 for the placement of the capacitor. In addition, a 1-µF to 10-µF capacitor is recommended. In some situations, additional bypassing may be required, such as a 100-µF electrolytic capacitor or even a Pi filter made up of inductors and capacitors—all designed to essentially low-pass filter the 5-V supply, removing the high frequency noise.

Table 2. Power Supply Decoupling Capacitor Placement

POWER SUPPLY PLANE SUPPLY PINS	CONVERTER ANALOG SIDE	CONVERTER DIGITAL SIDE
Pin pairs that require shortest path to decoupling capacitors	(4,5), (8,9), (10,11), (13,15), (43,44), (45,46)	(24,25), (34, 35)
Pins that require no decoupling	12, 14	37

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
ADS8405IBPFBR	ACTIVE	TQFP	PFB	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ADS8405I B	Samples
ADS8405IBPFBRG4	ACTIVE	TQFP	PFB	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ADS8405I B	Samples
ADS8405IBPFBT	ACTIVE	TQFP	PFB	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ADS8405I B	Samples
ADS8405IBPFBTG4	ACTIVE	TQFP	PFB	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ADS8405I B	Samples
ADS8405IPFBR	ACTIVE	TQFP	PFB	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ADS8405I	Samples
ADS8405IPFBRG4	ACTIVE	TQFP	PFB	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ADS8405I	Samples
ADS8405IPFBT	ACTIVE	TQFP	PFB	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ADS8405I	Samples
ADS8405IPFBTG4	ACTIVE	TQFP	PFB	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ADS8405I	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

11-Apr-2013

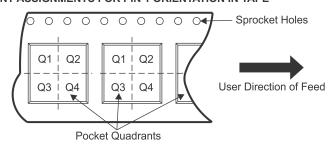
(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Jan-2013


TAPE AND REEL INFORMATION

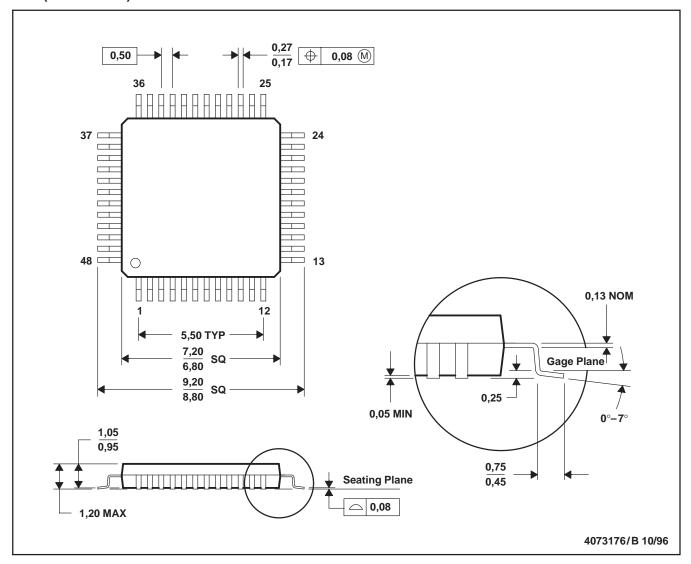
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All difficults are florifinal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ADS8405IBPFBR	TQFP	PFB	48	1000	330.0	16.4	9.6	9.6	1.5	12.0	16.0	Q2
ADS8405IBPFBT	TQFP	PFB	48	250	330.0	16.4	9.6	9.6	1.5	12.0	16.0	Q2
ADS8405IPFBR	TQFP	PFB	48	1000	330.0	16.4	9.6	9.6	1.5	12.0	16.0	Q2
ADS8405IPFBT	TQFP	PFB	48	250	330.0	16.4	9.6	9.6	1.5	12.0	16.0	Q2

www.ti.com 26-Jan-2013

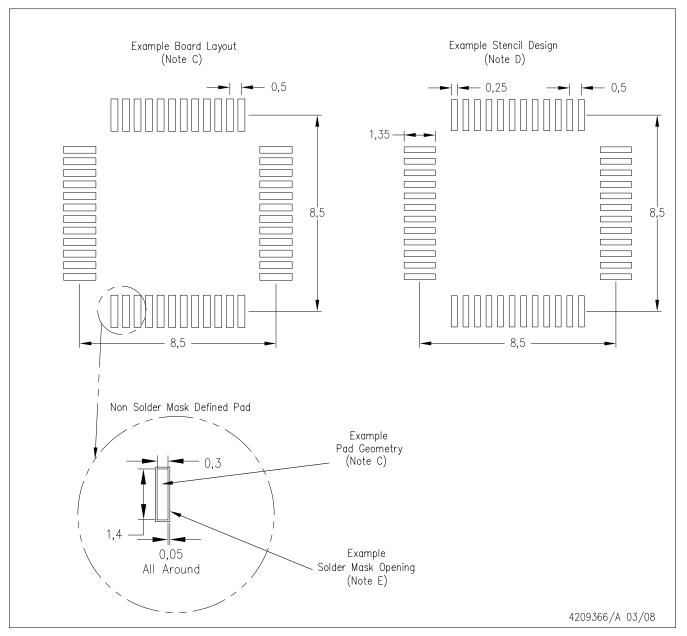


*All dimensions are nominal

7 til difficiono di c fictimidi							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADS8405IBPFBR	TQFP	PFB	48	1000	367.0	367.0	38.0
ADS8405IBPFBT	TQFP	PFB	48	250	367.0	367.0	38.0
ADS8405IPFBR	TQFP	PFB	48	1000	367.0	367.0	38.0
ADS8405IPFBT	TQFP	PFB	48	250	367.0	367.0	38.0

PFB (S-PQFP-G48)

PLASTIC QUAD FLATPACK



NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

PFB (S-PQFP-G48)

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>