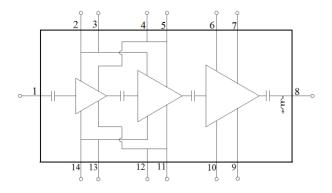


RFMD + TriQuint = Qorvo


## **Applications**

X-band radar

#### **Product Features**

- Frequency Range: 8 11GHz
- P<sub>OUT</sub>: 48dBm @ PIN = 23dBm
- PAE: 42% @ PIN = 23dBm
- Large Signal Gain: 25dB
- Small Signal Gain: 31dB
- Return Loss: >10dB
- Bias:  $V_D = 28V$ ,  $I_{DQ} = 650mA$ ,  $V_G = -2.8V$  Typical
- Pulsed  $V_{D:}$  PW = 100us and DC = 10%
- Chip Dimensions: 5.49 x 7.0 x 0.10 mm

#### **Functional Block Diagram**



#### **General Description**

TriQuint's TGA2238 is a high power MMIC amplifier fabricated on TriQuint's production 0.25um GaN on SiC process. The TGA2238 operates from 8 – 11GHz and provides a superior combination of power, gain and efficiency by achieving more than 60W of saturated output power with 25dB of large signal gain and more than 42% power-added efficiency.

This superior performance provides system designers the flexibility to improve system performance while reducing size and cost.

The TGA2238 is matched to  $50\Omega$  with integrated DC blocking capacitor on RF input port simplifying system integration. It is ideally suited for military and commercial x-band radar systems.

Lead-free and RoHS compliant.

Evaluation boards are available upon request.

# **Pad Configuration**

| Pad No. | Symbol          |
|---------|-----------------|
| 1       | RF In           |
| 2, 14   | V <sub>G1</sub> |
| 3, 13   | V <sub>G2</sub> |
| 4, 12   | V <sub>D1</sub> |
| 5, 11   | V <sub>D2</sub> |
| 6, 10   | V <sub>G3</sub> |
| 7, 9    | V <sub>D3</sub> |
| 8       | RF Out          |

| Ordering Information |             |                                      |  |  |
|----------------------|-------------|--------------------------------------|--|--|
| Part                 | ECCN        | Description                          |  |  |
| TGA2238              | 3A001.b.2.b | 8 – 11GHz 60W GaN<br>Power Amplifier |  |  |



RFMD + TriQuint = Qorvo

# **TGA2238** 8 – 11GHz 60W GaN Power Amplifier

#### **Absolute Maximum Ratings**

| Parameter                                                                                  | Value        |
|--------------------------------------------------------------------------------------------|--------------|
| Drain Voltage (V <sub>D</sub> )                                                            | 40V          |
| Gate Voltage Range (V <sub>G</sub> )                                                       | -8 to 0V     |
| Drain Current (I <sub>D</sub> )                                                            | 8A           |
| Gate Current (I <sub>G</sub> )                                                             | -26 to 62mA  |
| Power Dissipation (P <sub>DISS</sub> ), 85°C,<br>Pulsed: PW = 100us; DC = 10%              | 158W         |
| Input Power ( $P_{IN}$ ), 50 $\Omega$ , $V_D$ = 25V, 85°C,<br>Pulsed: PW = 100us; DC = 10% | 30dBm        |
| Input Power ( $P_{IN}$ ), VSWR 3:1, VD = 25V, 85°C; Pulsed: PW = 100us; DC = 10%           | 30dBm        |
| Channel Temperature (T <sub>CH</sub> )                                                     | 275°C        |
| Mounting Temperature (30 seconds)                                                          | 320°C        |
| Storage Temperature                                                                        | -55 to 150°C |

Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied.

## **Recommended Operating Conditions**

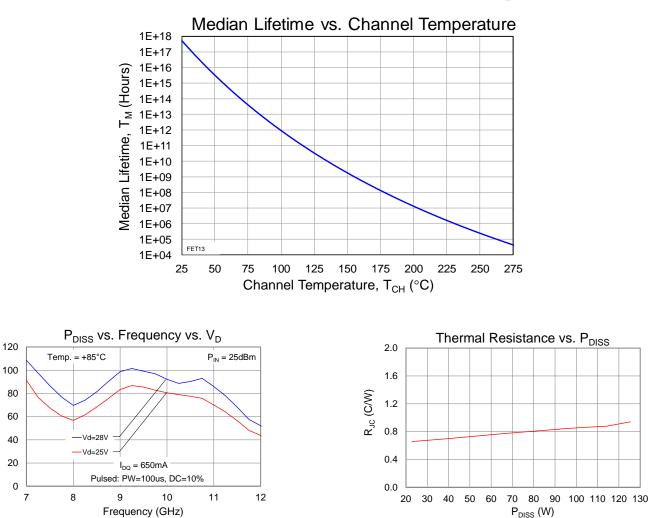
| Parameter                        | Value         |
|----------------------------------|---------------|
| Drain Voltage (V <sub>D</sub> )  | 28V           |
| Drain Current (I <sub>DQ</sub> ) | 650mA (Total) |
| Gate Voltage (V <sub>G</sub> )   | -2.8V (Typ.)  |

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

# **Electrical Specifications**

| Test conditions unless otherwise noted: 25°C, V <sub>D</sub> = 28V, I <sub>DQ</sub> = 650mA, V <sub>G</sub> = -2.8V Typical, Pulsed V <sub>D</sub> : PW = 100us, DC = 10% |     |         |     |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-----|--------|
| Parameter                                                                                                                                                                 | Min | Typical | Max | Units  |
| Operational Frequency Range                                                                                                                                               | 8   |         | 11  | GHz    |
| Small Signal Gain                                                                                                                                                         |     | 31      |     | dB     |
| Input Return Loss                                                                                                                                                         |     | 15      |     | dB     |
| Output Return Loss                                                                                                                                                        |     | 15      |     | dB     |
| Power Gain (Pin = 23dBm)                                                                                                                                                  |     | 25      |     | dB     |
| Output Power (Pin = 23dBm)                                                                                                                                                |     | 48      |     | dBm    |
| Power Added Efficiency (Pin = 23dBm)                                                                                                                                      |     | 42      |     | %      |
| Power @ 1dB Compression (P1dB)                                                                                                                                            |     | 36      |     | dBm    |
| Small Signal Gain Temperature Coefficient                                                                                                                                 |     | -0.058  |     | dB/°C  |
| Output Power Temperature Coefficient                                                                                                                                      |     | -0.014  |     | dBm/°C |




## **Thermal and Reliability Information**

| Parameter                                               | Test Conditions                                                         | Value       | Units |
|---------------------------------------------------------|-------------------------------------------------------------------------|-------------|-------|
| Thermal Resistance $(\theta_{JC})^{(1)}$                | $T_{base} = 85^{\circ}C$ , Pulsed V <sub>D</sub> : PW = 100us, DC = 10% | 0.84        | °C/W  |
| Channel Temperature (T <sub>CH</sub> ) (Under RF drive) | $V_D = 25V$ , $I_{D_Drive} = 6A$ , Freq=9.25GHz                         | 162         | °C    |
| Median Lifetime (T <sub>M</sub> )                       | $P_{IN} = 25 dBm$ , $P_{OUT} = 47.8 dBm$ , $P_{DISS} = 92W$             | 4.48 x 10^9 | Hrs   |

| Thermal Resistance $(\theta_{JC})^{(1)}$                | $T_{base} = 85^{\circ}C$ , Pulsed V <sub>D</sub> : PW = 100us, DC = 10% | 0.87       | °C/W |
|---------------------------------------------------------|-------------------------------------------------------------------------|------------|------|
| Channel Temperature (T <sub>CH</sub> ) (Under RF drive) | $V_{D} = 28V, I_{D_Drive} = 6.3A, Freq = 9.25GHz$                       | 178        | °C   |
| Median Lifetime (T <sub>M</sub> )                       | $P_{IN} = 25 dBm$ , $P_{OUT} = 48.3 dBm$ , $P_{DISS} = 107W$            | 9.7 x 10^8 | Hrs  |

Notes:

1. Thermal resistance measured to back of carrier plate. MMIC mounted on 40 mils CuMo (80/20) carrier using 1.5 mil AuSn.



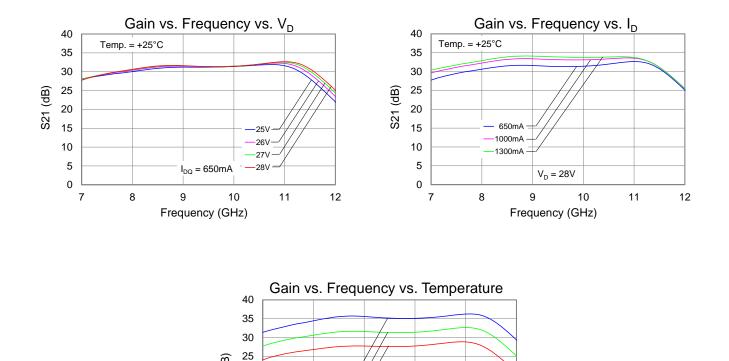
Test Conditions:  $V_D = 40$  V; Failure Criteria = 10% reduction in  $I_{D_MAX}$ 

Preliminary Datasheet: Rev B 08-25-15 © 2015 TriQuint

P<sub>DISS</sub> (W)



# **Typical Performance (Small Signal)**


S21 (dB) 20

15

10

5

0 7



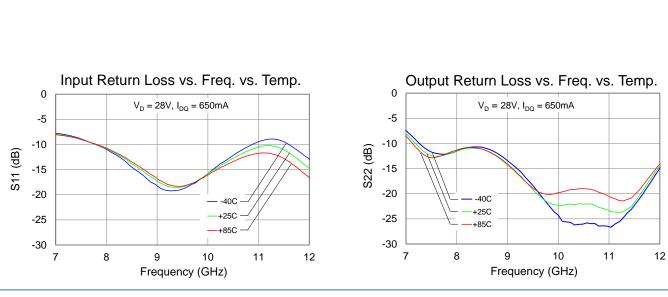
40C

250

-85C

8

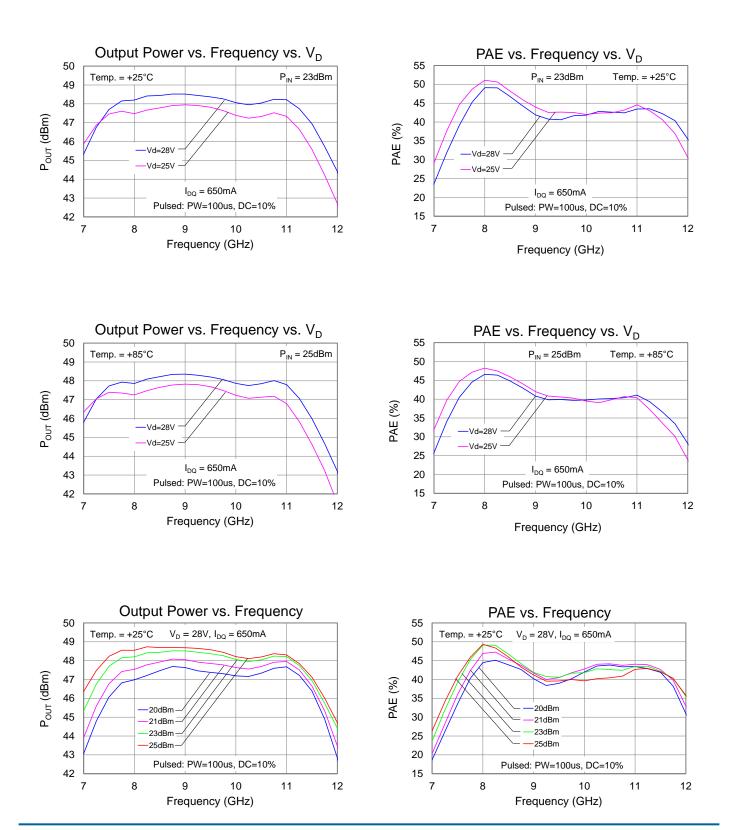
 $V_{\rm D} = 28V, I_{\rm DQ} = 650 \text{mA}$ 


Frequency (GHz)

10

11

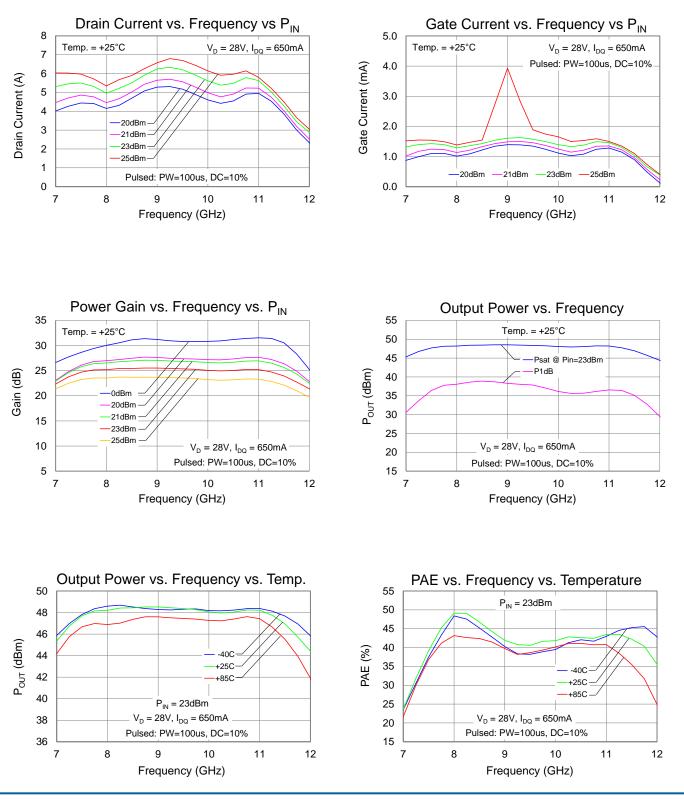
12


9



Preliminary Datasheet: Rev B 08-25-15 © 2015 TriQuint




## **Typical Performance (Pulsed Operation)**



Preliminary Datasheet: Rev B 08-25-15 © 2015 TriQuint



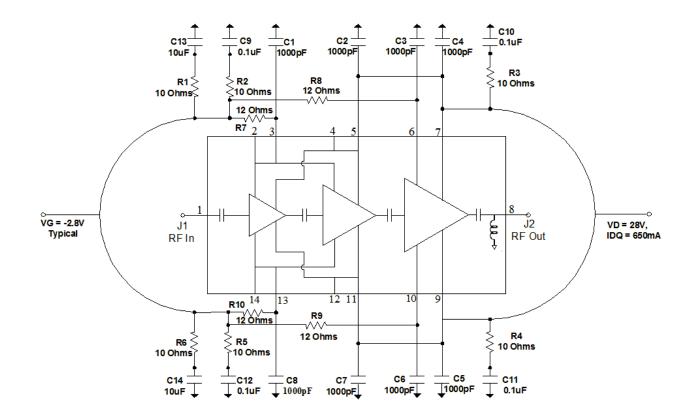

## **Typical Performance (Pulsed Operation)**



Preliminary Datasheet: Rev B 08-25-15 © 2015 TriQuint



## **Typical Performance (Pulsed Operation)**




Preliminary Datasheet: Rev B 08-25-15 © 2015 TriQuint

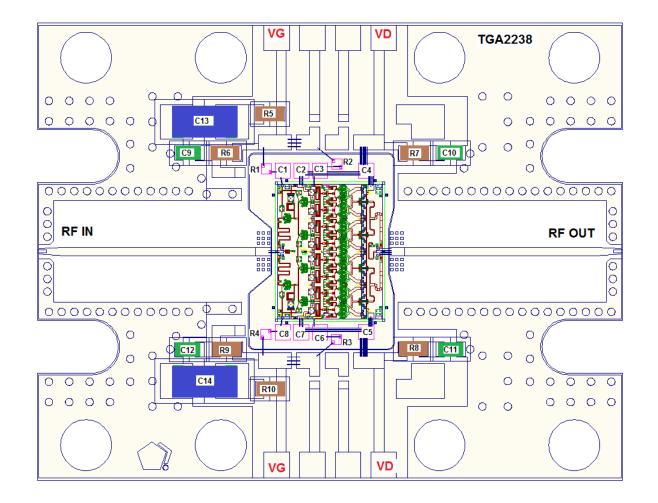


# **TGA2238** 8 – 11GHz 60W GaN Power Amplifier

# **Application Circuit**



#### **Bias-up Procedure**

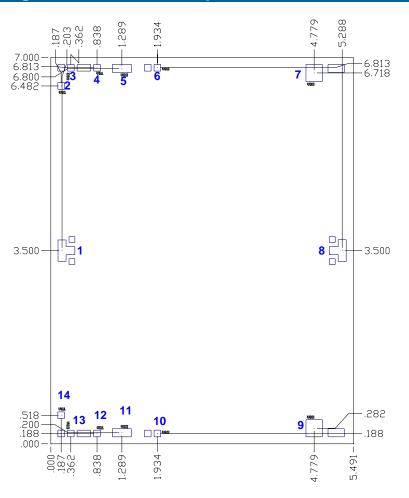

- 1. Set  $I_D$  limit to 8A,  $I_G$  limit to 20mA
- 2. Set V<sub>G</sub> to -5.0V
- 3. Set VD +28V
- 4. Adjust V<sub>G</sub> more positive until I<sub>DQ</sub> = 650mA (V<sub>G</sub> ~ -2.8V Typical)
- 5. Apply RF signal

### **Bias-down Procedure**

- 1. Turn off RF signal
- 2. Reduce  $V_G$  to -5.0V. Ensure  $I_{DQ} \sim 0mA$
- 3. Set  $V_{\text{D}}$  to 0V
- 4. Turn off  $V_D$  supply
- 5. Turn off  $V_G$  supply



## **Evaluation Board (EVB) Layout Assembly**




#### **Bill of Materials**

| Reference Design | Value  | Description              | Manufacturer | Part Number |
|------------------|--------|--------------------------|--------------|-------------|
| C1 – C8          | 1000pF | SLC, 50V                 | Various      |             |
| C9 – C12         | 0.1uF  | Cap, 0402, 50V, 10%, X7R | Various      |             |
| C13 – C14        | 10uF   | Cap, 1206, 50V, 20%, X5R | Various      |             |
| R1 – R4          | 12Ω    | Single Layer Resistor    | Various      |             |
| R5 – R10         | 10Ω    | Res, 0402                | Various      |             |
|                  |        |                          |              |             |



### **Mechanical Drawing & Bond Pad Description**



Unit: millimeters Thickness: 0.10 Die x, y size tolerance: +/- 0.050 Chip edge to bond pad dimensions are shown to center of pad Ground is backside of die

| Bond Pad | Symbol | Pad Size      | Description                                                                                 |
|----------|--------|---------------|---------------------------------------------------------------------------------------------|
| 1        | RF In  | 0.146 x 0.386 | RF Input; matched to 50Ω; DC blocked                                                        |
| 2, 14    | VG1    | 0.121 x 0.121 | VG1 and VG2 are internally connected so either one can be used for both                     |
| 3, 13    | VG2    | 0.121 x 0.121 | VG1 or VG2, bias network is required; see Application Circuit on page 8 as an example.      |
| 4, 12    | VD1    | 0.121 x 0.121 | VD1 and VD2 are internally connected so either one can be used for both                     |
| 5, 11    | VD2    | 0.346 x 0.146 | VD1 or VD2, bias network is required; see Application Circuit on page 8 as an example.      |
| 6, 10    | VG3    | 0.121 x 0.121 | Gate voltage 3, bias network is required; see Application Circuit on page 8 as an example.  |
| 7, 9     | Vd3    | 0.296 x 0.310 | Drain voltage 3, bias network is required; see Application Circuit on page 8 as an example. |
| 8        | RF Out | 0.146 x 0.386 | RF Output; matched to $50\Omega$ ; DC shorted to ground                                     |

#### Assembly Notes

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment (i.e. epoxy) can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.

Reflow process assembly notes:

- Use AuSn (80/20) solder and limit exposure to temperatures above 300°C to 3-4 minutes, maximum.
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- Do not use any kind of flux.
- · Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonic are critical parameters.
- Aluminum wire should not be used.
- Devices with small pad sizes should be bonded with 0.0007-inch wire.