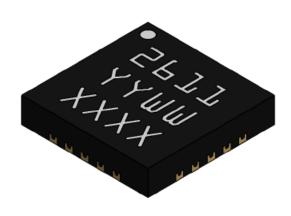


Product Description


Qorvo's TGA2611-SM is a packaged broadband Low Noise Amplifier fabricated on Qorvo's QGaN25 0.25 um GaN on SiC process. The TGA2611-SM operates from 2 to 6 GHz and typically provides >18 dBm P1dB, >22 dB of small signal gain and 30 dBm of OTOI with 1.0 dB NF. In addition to the high overall electrical performance, this GaN amplifier also provides a high level of input power robustness which allows more flexibility in designing the receive chain circuit protection.

The TGA2611-SM is available in a low cost, surface mount 20-lead 4x4 mm plastic QFN. It is ideally suited to support both radar and satellite communication applications.

Both RF ports have intergraded DC blocking caps and are fully matched to 50 ohms.

Lead-Free and RoHS compliant.

Evaluation boards are available upon request.

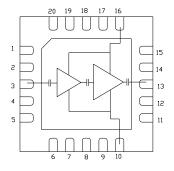
Product Features

• Frequency Range: 2-6 GHz

• NF: 1.0 dB

• OTOI: 30 dBm @ Pout/Tone = 18 dBm

Small Signal Gain: 22 dB


• Return Loss: > 10 dB

• P1dB: 18 dBm; P_{SAT} = 26 dBm @ P_{IN} = 10 dBm

• Bias: $V_D = 10 \text{ V}$, $I_{DQ} = 100 \text{ mA}$; $V_G = -2.3 \text{ V}$ (Typical)

• Package Dimensions: 4.0 x 4.0 x 0.85 mm

Functional Block Diagram

Applications

- Commercial & Military Radar
- Communications

Ordering Information

Part No.	ECCN	Description
TGA2611-SM	EAR99	2-6 GHz GaN LNA

TGA2611-SM 2-6 GHz GaN LNA

Absolute Maximum Ratings

Parameter	Range / Value	Units
Drain Voltage (V _D)	+40	V
Gate Voltage (V _G)	−5 to 0	V
Drain Current (I _D)	300	mA
Gate Current (I _G)	See graph on page 3	_
Power Dissipation, 85 °C (P _{DISS})	6	W
RF Input Power, CW, 50 Ω	30	dBm
Channel Temperature (T _{CH})	+275	°C
Mounting Temperature (30 seconds maximum)	+260	°C
Storage Temperature	−55 to +150	°C

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Recommended Operating Conditions

Parameter				
Drain Voltage (V _D)	10 V			
Gate Voltage (V _G)	-2.3 V Typical			
Quiescent Drain Current (IDQ)	100 mA			
Temperature (T _{BASE})	-40 to 85 °C			

Electrical performance is measured under conditions noted in the electrical specifications table. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Parameter	Conditions	Min	Тур	Max	Units
Operational Frequency Range		2		6	GHz
Small Signal Gain			> 22		dB
Input Return Loss			> 10		dB
Output Return Loss			> 10		dB
Noise Figure			1		dB
Output Power @ 1 dB Gain Compression (P _{1dB})			> 18		dBm
Output TOI	P _{OUT} /Tone = 18 dBm, Δf = 10 MHz		30		dBm
Small Signal Gain Temperature Coefficient			-0.03		dB/°C
Noise Figure Temperature Coefficient			0.007		dB/°C

Test conditions unless otherwise noted: T_{BASE} = +25 °C, V_D = 10V, I_{DQ} = 100mA, V_G = -2.3V Typical, CW

Thermal and Reliability Information

Parameter	Test Conditions	Value	Units
Thermal Resistance (θ _{JC}) ⁽¹⁾	$T_{BASE} = +85 ^{\circ}\text{C}, V_D = 10 \text{V}, I_{DQ} = 100 \text{mA},$	19	°C/W
Channel Temperature (T _{CH}) (1)	$I_{D_{DRIVE}} = 195 \text{ mA}, P_{IN} = 10 \text{ dBm}, P_{OUT} = 28 \text{ dBm},$	110	°C
Median Lifetime (T _M)	Freq. = 4 GHz, P _{DISS} = 1.3 W, CW	2.3E+11	Hrs.

Notes:

Median Lifetime

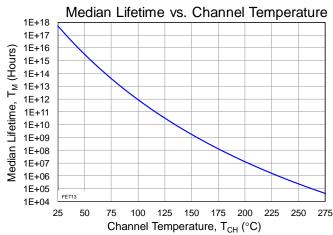
22

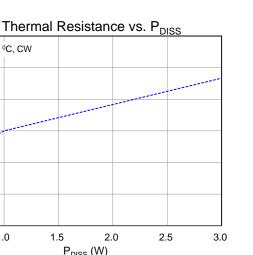
21

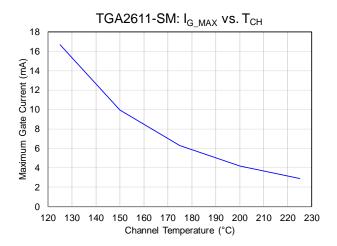
20

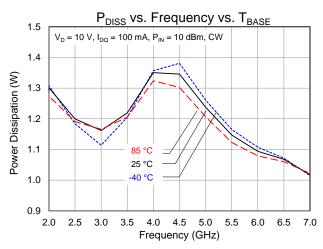
18

17


16

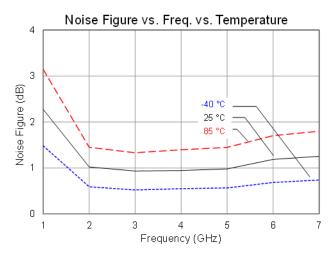

0.5


 R_{JC} (C/W) 19 $T_{BASE} = 85 \, {}^{\circ}\text{C}, \, \text{CW}$

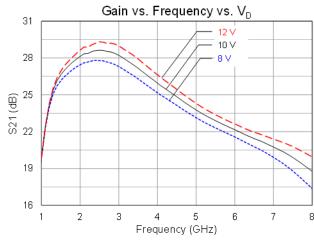

1.0

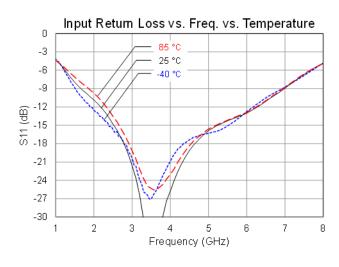
Test Conditions: $V_D = 40 \text{ V}$; Failure Criterion = 10% reduction in $I_{D \text{ MAX}}$

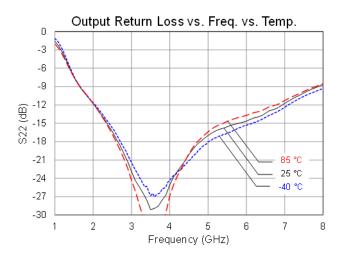
1.5

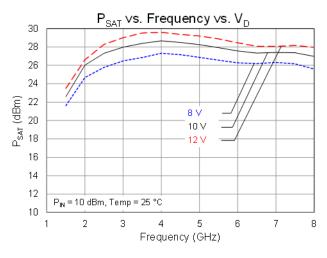

2.0

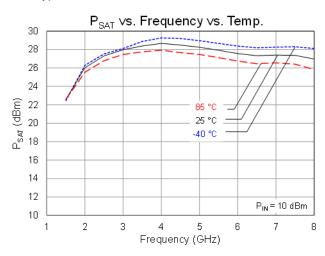
P_{DISS} (W)

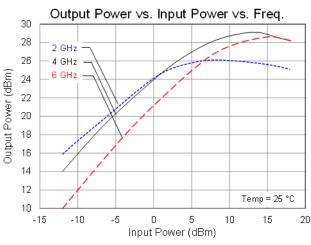

^{1.} Package backside temperature fixed at 85 °C.

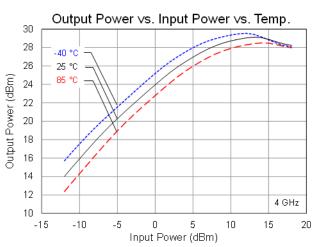


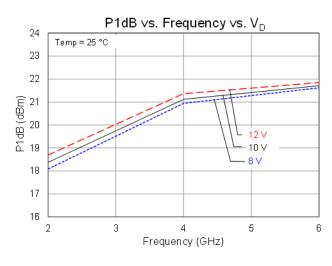

Performance Plots - Small Signal

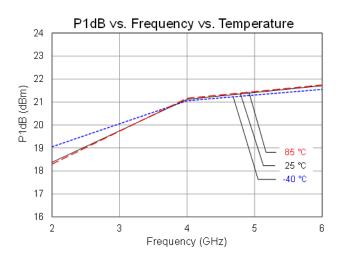


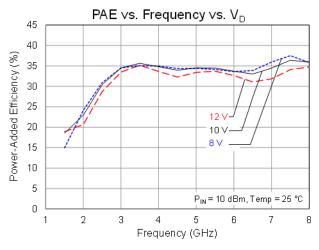


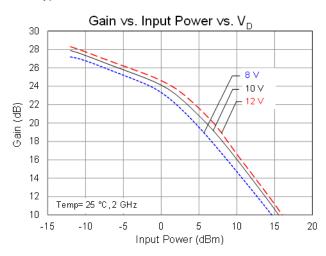


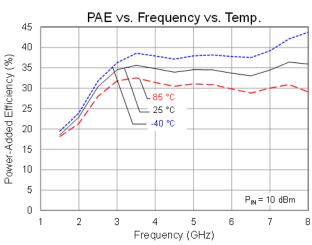


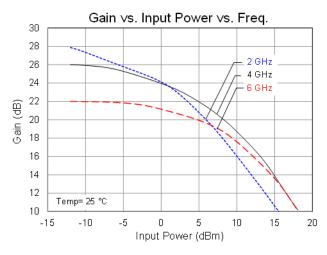

Performance Plots - Large Signal

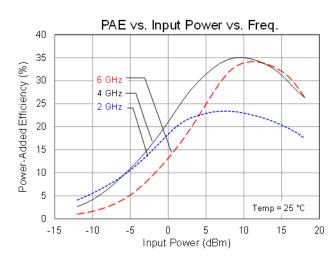


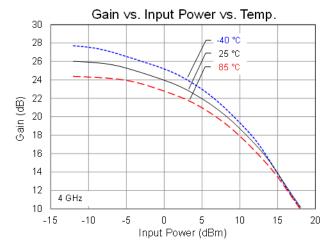


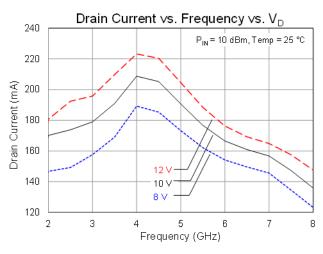


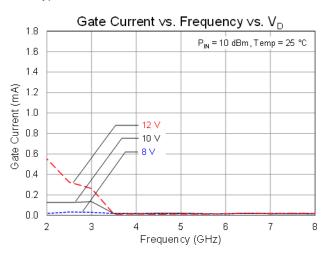


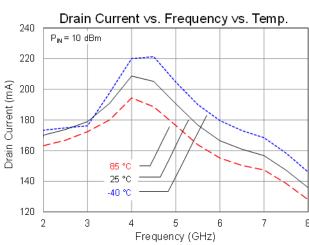


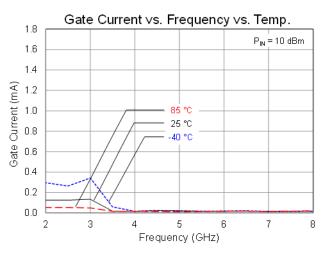

Performance Plots - Large Signal

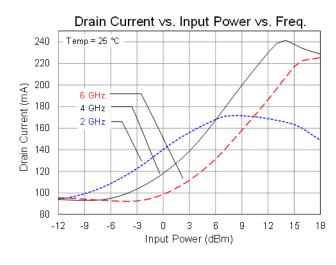


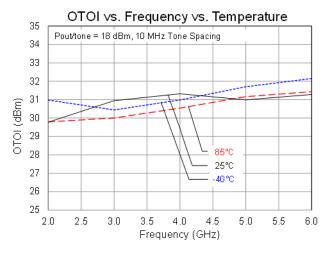


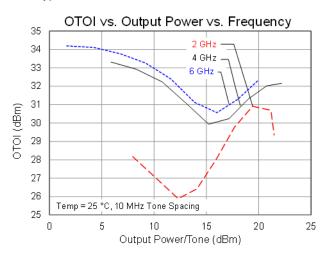


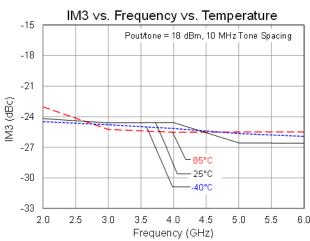


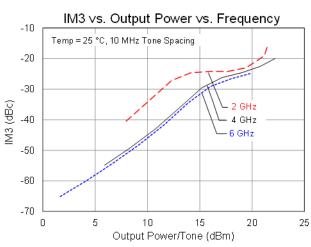


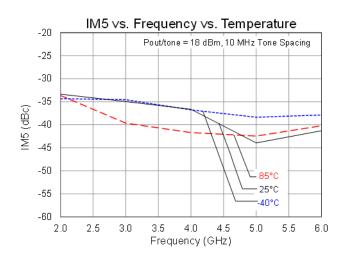

Performance Plots – Large Signal

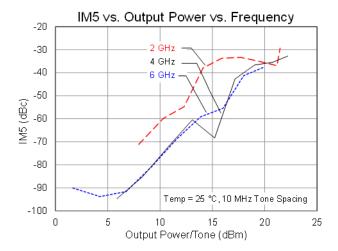


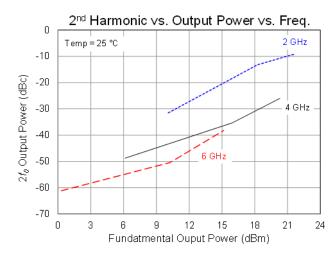


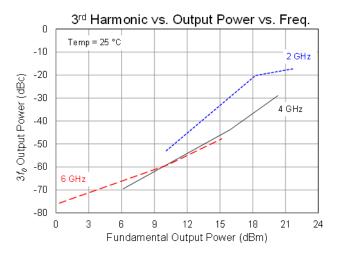


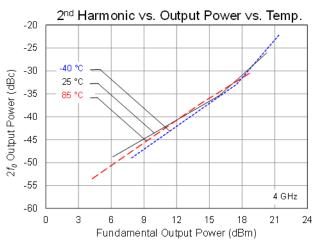


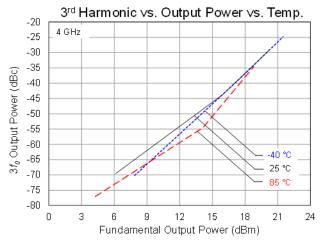

Performance Plots – Linearity



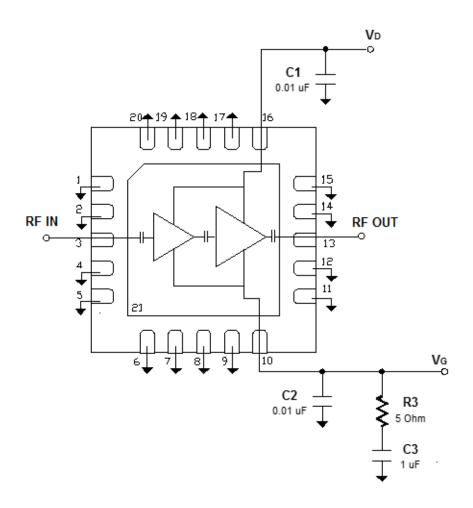








Performance Plots – Harmonic

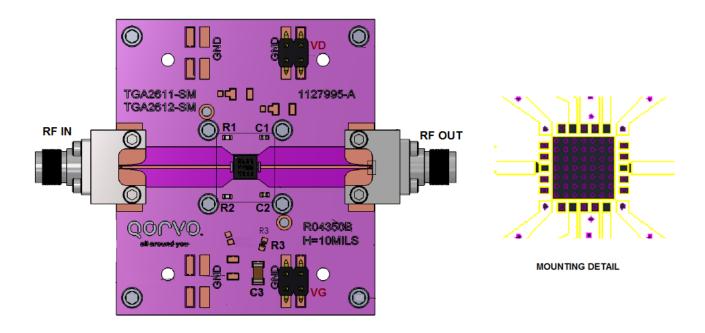


Application Circuit

Bias Up Procedure

- 1. Set I_D limit to 300 mA, I_G limit to 3 mA
- 2. Set V_G to -5.0V
- 3. Set V_D +10V
- 4. Adjust V_G more positive until $I_{DQ} = 100$ mA.

(V_G ~ -2.3 V Typical)


5. Apply RF signal

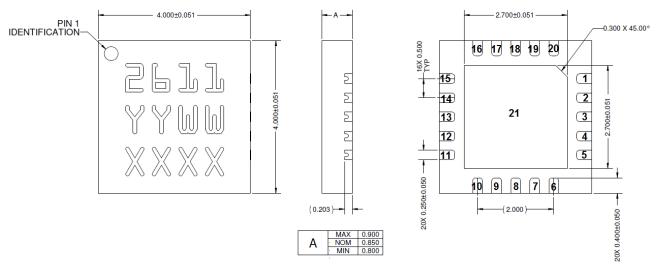
Bias Down Procedure

- 1. Turn off RF signal
- 2. Set V_G to -5.0V. Ensure $I_{DQ} \sim 0 mA$
- 3. Set V_D to 0V
- 4. Turn off V_D supply
- 5. Turn off V_G supply

Evaluation Board Layout

The microstrip line at the connector interface is optimized for the Southwest Microwave end launch connector 1092-01A-5.

The pad pattern shown has been developed and tested for optimized assembly at Qorvo. The PCB land pattern has been developed to accommodate lead tolerances. Since processes vary from company to company, careful process development is recommended


Multiple vias should be employed under the package center paddle to minimize inductance resistance.

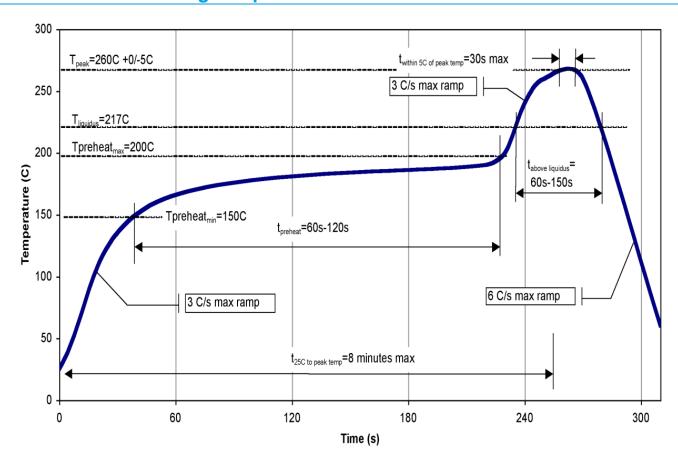
Bill of Materials

Reference Des.	Value	Description	Manuf.	Part Number
C1, C2	0.01 µF	Cap, 0402, 50 V, 10%, X7R	Various	_
C3	1 μF	Cap, 1206, 50 V, 10%, X7R	Various	_
R1, R2	0 Ω	Res, 0402, 5% (Required for above EVB design)	Various	
R3	5 Ω	Res, 0603, 5%	Various	_

Mechanical Information, Pin Configuration and Description

NOTES:

OTES:


1. PACKAGE LEADS ARE GOLD PLATED.
2. PART IS MOLD ENCAPSULATED.
3. PART MARKING:
2611: PART NUMBER
YY: PART ASSEMBLY YEAR
WW: PART ASSEMBLY WEEK
XXXX: BATCH ID

UNLESS OTHERWISE SPECIFIED: DIMENSION ARE IN MM
TOLERANCES X.XX = ±.25 X.XXX = ±.127 X.XXXX = ±.0254 ANGLES = 0.5°

Pin No.	Label	Description
1-2, 4-9, 11, 12, 14, 15, 17-20	N/C	Recommend grounding on PCB for improved package isolation. Connected to ground paddle (21)
3	RF Input	RF input, matched to 50 Ω, DC blocked
10	V _G	Gate voltage. Bias network required
13	RF Output	RF output, matched to 50 Ω, DC blocked
16	V_D	Drain voltage. Bias network required.
21	GND	Ground Paddle. Multiple vias should be employed to minimize inductance and thermal resistance.

Recommended Soldering Temperature Profile

