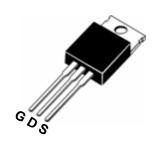
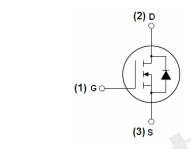


N-Channel Enhancement Mode Power Mosfet

Description

It utilizes the latest trench processing techniques to achieve the cell density and reduces the on-resistance with high repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in power switching application and wide variety of other applications


Features and Benefits


- Advanced trench MOSFET process technology
- Special designed for PWM, load switching and general purpose applications
- Ultra low on-resistance with low gate charge
- Fast switching and reverse body recovery
- 175°C operating temperature

Main Product Characteristics

V_{DSS}	75V
R _{DS} (on)	3.3mohm(typ.)
I _D	170A

PIN Connection TO-220AB

Marking Diagram

Y = Year A = Assembly Location

WW = Work Week

FIR170N075P= Specific Device Code

Package Marking And Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
FIR170N075P	FIR170N075PG	TO-220	-	-	-

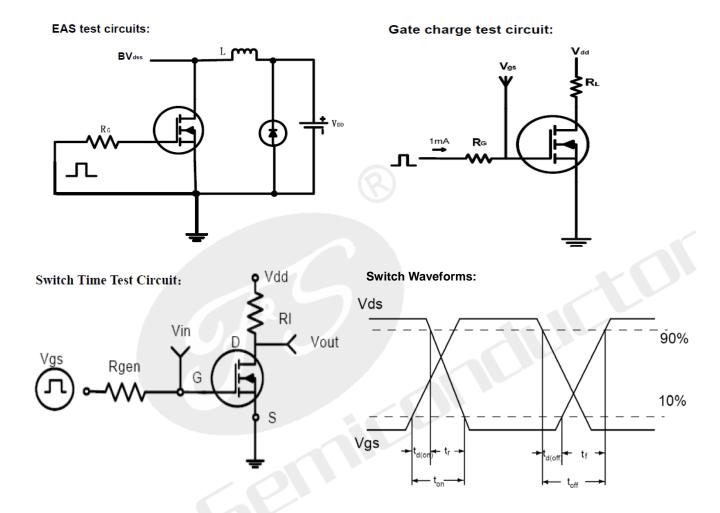
Absolute max Rating:

Symbol	Parameter	Max.	Units
I _D @ TC = 25°C	Continuous Drain Current, V _{GS} @ 10V①	170	
I _D @ TC = 100°C	C = 100°C Continuous Drain Current, V _{GS} @ 10V①		Α
I _{DM}	Pulsed Drain Current②	670	
D @TC = 25°C	Power Dissipation③	272	W
P _D @TC = 25°C	Linear Derating Factor	2.0	W/°C
V _{DS}	Drain-Source Voltage	75	V
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy @ L=0.3mH2	960	mJ
I _{AR}	Avalanche Current @ L=0.3mH2	80	Α
T _J T _{STG}	Operating Junction and Storage Temperature Range	-55 to + 175	°C

Thermal Resistance

Symbol	Characterizes	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-case③	_	0.55	°C/W
D	Junction-to-ambient (t $\leq 10 \mathrm{s}$) (4)	_	62	°C/W
$R_{\theta JA}$	Junction-to-Ambient (PCB mounted, steady-state) ④	_	40	°C/W

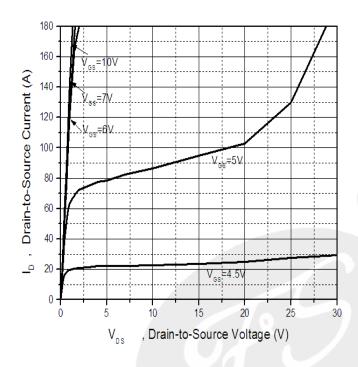
Electrical Characterizes $@T_A=25^{\circ}C$ unless otherwise specified


Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source breakdown voltage	75	_	_	V	V _{GS} = 0V, ID = 250μA	
Б	0 5	_	3.3	5	mΩ	V _{GS} =10V,I _D = 30A	
$R_{DS(on)}$	Static Drain-to-Source on-resistance	_	6.25	_		T _J = 125℃	
	Cata threehold voltage	2	_	4	\/	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	
$V_{GS(th)}$	Gate threshold voltage	_	2.0	_	V	T _J = 125℃	
L	Drain to Source leakage gurrent		_	1		$V_{DS} = 75V, V_{GS} = 0V$	
I _{DSS}	Drain-to-Source leakage current	_	_	50	μA	T _J = 125°C	
	Cata to Source forward lookage	_	_	100	nA	V _{GS} =20V	
I _{GSS}	Gate-to-Source forward leakage	-100	_	_		V _{GS} = -20V	
Qg	Total gate charge	_	221	_		I _D = 30A,	
Q _{gs}	Gate-to-Source charge	_	42	-	nC	V _{DS} =30V,	
Q _{gd}	Gate-to-Drain("Miller") charge	_	70	-		V _{GS} = 10V	
t _{d(on)}	Turn-on delay time	_	25			V_{GS} =10V, VDS=30V, R_L =15 Ω , R_{GEN} =2.55 Ω	
t _r	Rise time		24	_			
t _{d(off)}	Turn-Off delay time	_	125	_	ns		
t _f	Fall time		53	_			
C _{iss}	Input capacitance	_	9139	_		V _{GS} = 0V	
Coss	Output capacitance	_	757	_	pF	V _{DS} = 25V	
C _{rss}	Reverse transfer capacitance	_	669	_		f = 600KHz	

Source-Drain Ratings and Characteristics

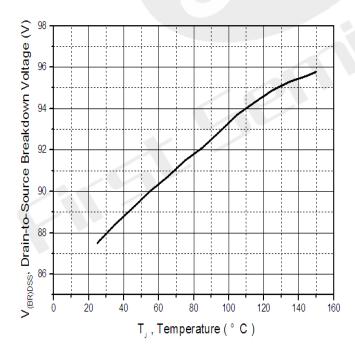
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
,	Continuous Source Current			470	٨	MOSFET symb
Is	(Body Diode)	ody Diode) — — 170	Α	showing the		
I _{SM}	Pulsed Source Current		_	670	А	integral reverse
	(Body Diode)	_				p-n junction diode.
V _{SD}	Diode Forward Voltage	_	0.84	1.3	V	I _S =30A, V _{GS} =0V
t _{rr}	Reverse Recovery Time	_	47	_	ns	$T_J = 25^{\circ}C$, $I_F = 75A$, $di/dt =$
Q _{rr}	Reverse Recovery Charge	_	97	_	nC	100A/μs

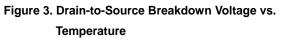
Test circuits and Waveforms



Notes:

- ①The maximum current rating is limited by bond-wires.
- ②Repetitive rating; pulse width limited by max. junction temperature.
- ③The power dissipation PD is based on max. junction temperature, using junction-to-case thermal resistance.
- 4 The value of $R_{\theta JA}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C
- ⑤These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}=175$ °C.
- ⑥ The maximum current rating is limited by bond-wires.


Typical electrical and thermal characteristics



3.0 2.8 Gate-to-Source Voltage (V) 2.6 2.2 2.0 V_{GS}, 1.6 40 80 100 120 20 140 160 T₁, Temperature (° C)

Figure 1: Typical Output Characteristics

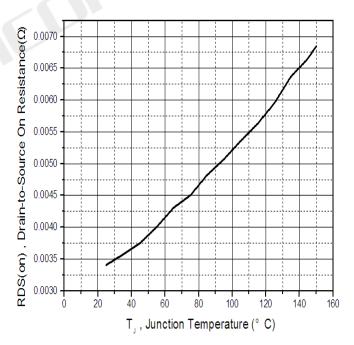
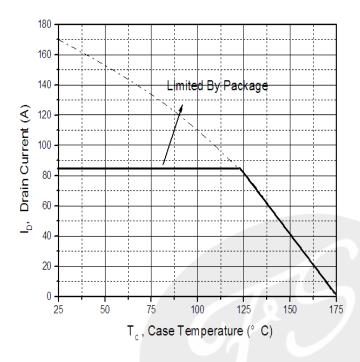



Figure 4: Normalized On-Resistance Vs. Case Temperature

Typical electrical and thermal characteristics

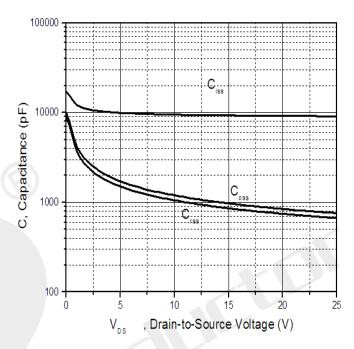


Figure 5. Maximum Drain Current Vs. Case Temperature

Figure 6.Typical Capacitance Vs. Drain-to-Source Voltage

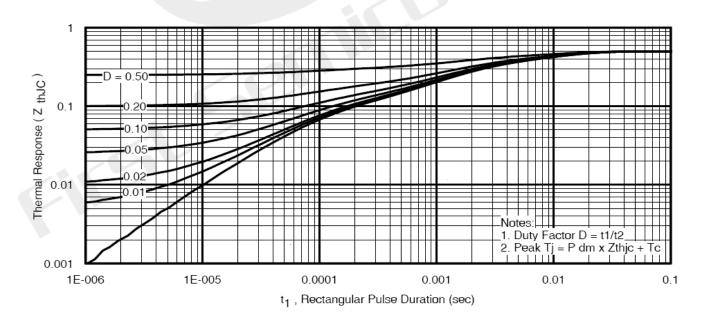
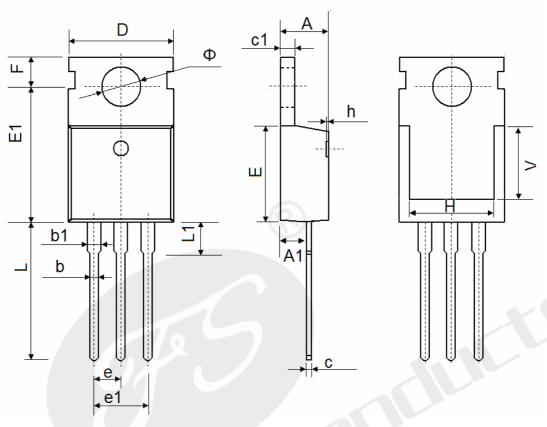



Figure 7. Maximum Effective Transient Thermal Impedance, Junction-to-Case

TO-220AB Package Information

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
А	4.400	4.600	0.173	0.181	
A1	2.250	2.550	0.089	0.100	
b	0.710	0.910	0.028	0.036	
b1	1.170	1.370	0.046	0.054	
С	0.330	0.650	0.013	0.026	
c1	1.200	1.400	0.047	0.055	
D	D 9.910		0.390	0.404	
E	E 8.9500		0.352	0.384	
E1	12.650	12.950	0.498	0.510	
е	2.540	TYP.	0.100	TYP.	
e1	4.980	5.180	0.196	0.204	
F	2.650	2.950	0.104	0.116	
Н	7.900	8.100	0.311	0.319	
h	h 0.000		0.000	0.012	
L	L 12.900		0.508	0.528	
L1	2.850	3.250	0.112	0.128	
V	7.500	7.500 REF.		REF.	
Ф	3.400	3.800	0.134	0.150	

Declaration

- FIRST reserves the right to change the specifications, the same specifications of products due to different
 packaging line mold, the size of the appearance will be slightly different, shipped in kind, without notice!
 Customers should obtain the latest version information before ordering, and verify whether the relevant
 information is complete and up-to-date.
- Any semiconductor product under certain conditions has the possibility of failure or failure, The buyer has the
 responsibility to comply with safety
 standards and take safety measures when using FIRST products for system design and manufacturing, To
 avoid To avoid potential failure risks, which may cause personal injury or property damage!
- Product promotion endless, our company will wholeheartedly provide customers with better products!

ATTACHMENT

Revision History

Date	REV	Description	Page
2018-01-01	1.0	Initial release	