北京东吴力伟科技有限责任公司

DH72NF/968NS/968NF/966NF智能数显转速表/频率计/线速度表

仪表内含转速表、频率计两种功能,各对应 有三组继电器J1、J2、J3输出,其中继电器 J1输出有8种动作方式,继电器J2、J3输出可 分别用于上、下限同时报警,充分满足控制 现场的需要。

输入信号: 开关量、电平脉冲(低电平: -30 V ~ +0.5V; 高电平:+4V ~ +30V)。

可外接开关触点信号、电平脉冲信号、光电对 管、接近开关、光栅传感器、磁电传感器、霍 尔传感器、编码器等。

可向外接传感器提供9V(30 mA)直流电压源。 无效零消隐,全部参数设定值都有停电记忆。

·、技术参数

测量范围:0.9Hz ~ 40KHz

供电电源:AC20 ~ 265V; DC20 ~ 360V

整机功耗:小于2W

可设定倍率A、倍率b、初始值C、小数点dot , 显示测量值(PV)=脉冲测量值 \times A \div b + C

超限显示:"EEEEEE"

继电器触点容量:AC277V 10A; DC30V 10A(阻性负载) 三、产品功能

继电器触点寿命:1×10⁷次 输入信号内部阻抗:10K

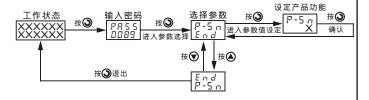
外形和安装尺寸:

型号	数码管字高(英寸)		外型尺寸	开孔尺寸
	上排(红)	下排(绿)	外室尺寸	71 107 9
DH72NF	0.36 0.36		72×72×110mm	$68^{+0.5} \times 68^{+0.5} \text{mm}$
DH968NS	0.56(単排)		96×48×110mm	92 ^{+0.5} × 44 ^{+0.5} mm
DH968NF	0.56	0.36	96×48×110mm	92 ^{+0.5} × 44 ^{+0.5} mm
DH966NF	0.56	0.56	96×96×110mm	92 ^{+0.5} × 92 ^{+0.5} mm

安装方式:面板卡入

工作温度:-10 ~ +50 ;

环境湿度: 85%RH 且无腐蚀气体

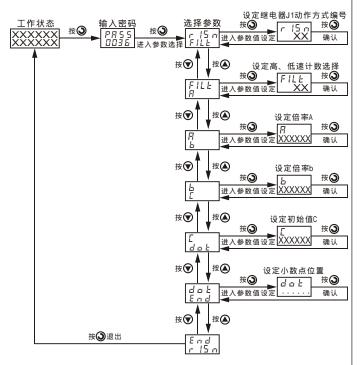

储存温度:-20 ~ +60

二、仪表面板(以DH72NF为例)

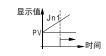
- (1) 红色J1灯为继电器1的控制输出指示灯,在吸合时亮、释放时灭。
- (2)红色J2、J3灯分别为继电器2、3的报警输出指示灯,在报警时亮 、取消报警时灭。
- (3)上排红色数码管,正常工作时用于显示测量值PV,设定时用于显 示当前的参数提示符。
- (4)下排绿色数码管,正常工作时用于显示继电器J1设定值SV(Jn: 或」∩2),设定时用于显示下一个参数提示符、或参数值。
- (5) ③ 为设定键,用于确认选定的参数提示符、或参数值。
- (6) ▶ 为移位键,用于向右移动被选定参数的位。
- (7) ▼为减小键,用于参数菜单上翻、或单向减小被选定位的数值。
- (8) ▲ 为增加键,用于参数菜单下翻、或单向增加被选定位的数值。

- 1. 按③后, PR55提示客户,输入密码0089,进入产 品功能设定, P-5 n提示客户,选择产品功能,有 1(转速表)、2(频率计)共两个功能,出厂时 功能编号为1,仪表为转速表。
- 2. 产品功能的设定方法(以DH72NF为例)

北京东吴力伟科技有限责任公司


四、转速/频率控制值

1. 按②后,PR55提示客户,输入密码0036,进入转速/频率控制值设定。


2. 转速/频率控制值介绍

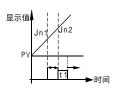
参数提	示符	参数意义	选项或范围	出厂值
r 15 n	r1Sn	继电器J1动作方式编号	01 ~ 08	01
FILE	FILt	数字滤波系数	0 ~ 9	0
Я	Α	倍率	1~999999	1
Ь	b	倍率	1~999999	1
Ε	С	初始值	-199999~999999	0
dat	dot	小数点位置		未位(不显示)
End	END	结束标志		

3. 转速/频率控制值的设定方法(以DH72NF为例)

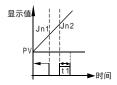
4. 继电器J1动作方式编号(r/5n)说明

编号:01 测量PV值达到 Jn1 后继 电器J1吸合。

编号:03 测量PV值达到 Jn1 后继电 器J1吸合,延时 t1 秒后继 电器J1释放。


编号:02 测量PV值达到 Jn1 后继 电器J1释放。

编号:04 测量PV值达到 Jn1 后继电器J1释放,延时 t1 秒后继电器J1吸合。


编号:05 测量PV值达到 Jn1 后 继电器J1吸合,测量 PV值达到 Jn2 后继电器 J1释放。

编号:07 测量PV值达到 Jn1 后继 电器J1吸合,测量PV值达到 Jn2 后继电器J1释放,延时 t1 秒后继电器J1吸合。

编号:06 测量PV值达到 Jn1 后 继电器J1释放,测量 PV值达到 Jn2 后继电器 J1吸合。

编号:08 测量PV值达到 Jn1 后继 电器J1释放,测量PV值达到 Jn2 后继电器J1吸合,延时 t1 秒后继电器J1释放。

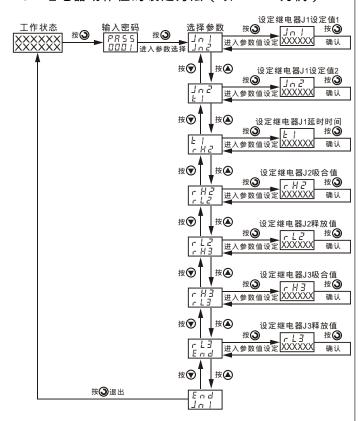
5. 数字滤波系数(FILE)用于滤除干扰信号,准确测量有用电平信号,例如测量开关触点信号。数字滤波系数的范围为:0~9,0表示无数字滤

数子滤波系数的氾围为:0 ~ 9,0表示无数子滤波,数字滤波系数越大、则滤波越强。

如果测量的比实际的多了、则应逐渐调大数字滤波 系数,直到不多。

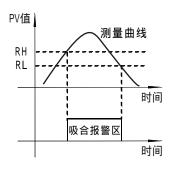
如果测量的比实际的少了、则应逐渐调小数字滤波 系数,直到不少。

出厂时数字滤波系数(FILE)为0,无数字滤波。

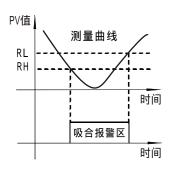

6. 小数点(da k)的位置,用于配合倍率A、倍率 b 的调整,保证仪表显示值的分辩率。

五、继电器动作值

- 按③后,PR55提示客户,输入密码0001,进入继电器动作值设定。
- 2. 继电器动作值介绍

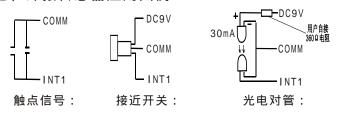

参数提示符		参数意义	选项或范围	出厂值			
Jn I	Jn1	继电器J1设定值1	-199999~999999	5000			
Jn2	Jn2	继电器J1设定值2	-199999~999999	6000			
Ŀ١	t1	继电器J1延时时间	0.1~99999.9	10.0(秒)			
r H Z	RH2	继电器J2吸合值	-199999~999999	3000			
r L2	RL2	继电器J2释放值	-199999~999999	4000			
r H3	RH3	继电器J3吸合值	-199999~999999	8000			
r L3	RL3	继电器J3释放值	-199999~999999	7000			
End	END	结束标志					

3. 继电器动作值的设定方法(以DH72NF为例)



六、继电器J2、J3报警输出说明

1. RH > RL 继电器动作见下图,常用于上限报警、上偏差报警、绝对值上限报警。



2. RH < RL 继电器动作见下图,常用于下限报警 、下偏差报警、绝对值下限报警。

3. 在设定继电器报警值时,应注意RH RL,否则继电器不动作。

七、外接传感器应用图例

八、应用举例说明

(一)测量频率:单位为Hz(P-5n设为2,为频率计) 频率(PV显示值) = 脉冲频率值 × A ÷ b + C 脉冲频率值范围:0.9Hz ~ 40KHz

- 1. 频率计测量频率时,当需要显示个位以后的位数时,可通过仪表的设定,引入小数点变化后得到期望的显示。
- 2. 取值方法:A=10^{dot}, b=1, 若小数点设定在最低位则 dot为0, 若小数点设定在次低位则dot为1,以此类推, 若小数点设定在最高位则dot为5,例如下表所示:

小数点dot位置	倍率A	倍率b	频率显示分辩率
	1	1	1Hz
	10	1	0.1Hz
	100	1	0.01Hz
	1000	1	0.001Hz
	10000	1	0.0001Hz
	100000	1	0.00001Hz

3. 在仪表测量频率时,若有固定误差,则可通过改变初始值C的设定值来消除固定误差。

(二)测量转速:单位为转/分钟(P-5n设为1为转速表)转速(PV显示值) = 脉冲转速值 × A ÷ b + C 脉冲转速值范围:54r/min ~ 2400000r/min

1. 转速表测量转速时,若每转取1个脉冲,最低测量转速为54r/min,如测量低于54r/min的转速,需在转轴处加装2或10或30等齿盘和孔盘,再配合仪表的设定可得到期望的显示测量范围,引入小数点变化后的转速公式为:

转速(转/分钟) = 脉冲转速值(脉冲个数/分钟) ÷ n(脉冲 个数/转) × 10^{dot} = 脉冲转速值 × 10^{dot} ÷ n (转/分钟)

2. 取值方法:A=10^{dot}, b=n,若小数点设定在最低位则dot为0,若小数点设定在次低位则dot为1,以此类推,若小数点设定在最高位则dot为5,n为每转脉冲个数,例如下表所示:

每转 脉冲数n	小数点 do t位置	倍率A	倍率b	转速显示范围
1个		1	1	54r/min~999999r/min
1个		10	1	54.0r/min~99999.9r/min
3个		10	3	18.0r/min~99999.9r/min
10个		10	10	5.4r/min~99999.9r/min
30个		10	30	1.8r/min~99999.9r/min
60个		10	60	0.9r/min~99999.9r/min

北京东吴力伟科技有限责任公司

- 3. 在仪表测量转速时,若有固定误差,则可通过改变初始值C的设定值来消除固定误差。
- (三)测量线速度:单位为米/秒(P-5 n 设为1为转速表) 线速度(PV显示值) = 脉冲转速值 × A ÷ b + C 脉冲转速值范围:54r/min ~ 2400000r/min
 - 1. 在生产实际中,除测量旋转体的转速,还经常要测量旋转体的线速度;转速表测量线速度时,若每转取1个脉冲,最低测量转速为54r/min的旋转体的线速度,如测量转速低于54r/min的旋转体的线速度,需在转轴处加装2或10或30等齿盘和孔盘,再配合仪表的设定可得到期望的显示测量范围,引入小数点变化后的线速度公式为:

线速度(米/秒) = 转速(转/分钟) ÷ 60(秒/分钟) × 旋转 体周长(米/转)

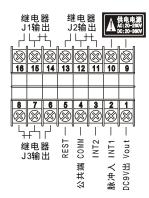
而:转速(转/分钟) = 脉冲转速值(脉冲个数/分钟) ÷ n (脉冲个数/转) × 10^{dot}

旋转体周长(米/转)=2× (圆周率)×r(旋转体半径)

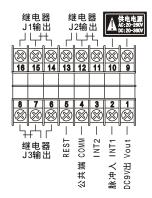
则:线速度(米/秒) = 脉冲转速值÷n×10^{dot}÷60×2 r = 脉冲转速值× r×10^{dot}÷(n×30) (米/秒)

2. 取值方法:A = r x 10^{dot}, b = n x 30, 若小数点设定在最低位则dot为0, 若小数点设定在次低位则dot为1, 以此类推, 若小数点设定在最高位则dot为5, 为圆周率取值为3.14, r为旋转体的半径, n为每转脉冲个数, 例如下表所示:

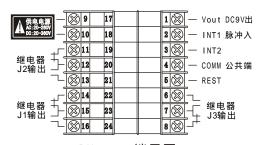
每转脉 冲数n	旋转体 半径r	小数点 dot位置	倍率A	倍率b	线速度显示范围
1个	0.5m		0.5	30	3m/s~125600m/s
1个	0.5m		500	30	2.826m/s~999.999m/s
3个	0.5m		500	90	$0.942 \text{m/s} \sim 999.999 \text{m/s}$
10个	0.5m		500	300	$0.283 \text{m/s} \sim 999.999 \text{m/s}$
30个	0.5m		500	900	$0.094 \text{m/s} \sim 999.999 \text{m/s}$
60个	0.5m		500	1800	$0.047 \text{m/s} \sim 999.999 \text{m/s}$


3. 在仪表测量线速度时,若有固定误差,则可通过改变初始值C的设定值来消除固定误差。

九、端子图


- 1. 继电器触点引出端子: ┌┤┤为常闭, ┌┤ │为
- 供电电源为直流时,接线不需要区分正极和 负极。
- 3. COMM为公共端, Vout端提供9V(30 mA)直流 电压源。
- 4. REST端无效。
- 5. INT1与COMM为信号输入端。
- 6. INT2端无效。

继电器 J3输出	🔯 8	15	1	$\overline{\mathbb{W}}_{L}$	
J3输出		16	2	<u>-[</u>	继电器 J1输出
REST	- 🛞 10	17	3	<u>w</u> _t	о . _{По} ш
公共端 COMM	- 🛞 11	18	4	<u></u>	继电器
INT2	- 🛞 12	19	5	<u></u>	J2输出
脉冲入 INT1	— 🛞 13	20	6	<u> </u>	↑ 供电电源
DC9V出 Vout	— 🛞 14	21	7	$\overline{\otimes}$ -	AG: 20-260V


DH72NF端子图

DH968NS端子图

DH968NF端子图

DH966NF端子图