Data Sheet # **B4N60D** N- Channel 600-V (D-S) MOSFET TO-252 package Version: A05 Please read the notice stated in this preamble carefully before accessing any contents of the document attached. Admission of BiTEK's statement therein is presumed once the document is released to the receiver. Notice: Firstly, the information furnished by Beyond Innovation Technology Co. Ltd. (BiTEK) in this document is believed to be accurate and reliable and subject to BiTEK's amendment without prior notice. And the aforesaid information does not form any part or parts of any quotation or contract between BiTEK and the information receiver. Further, no responsibility is assumed for the usage of the aforesaid information. BiTEK makes no representation that the interconnect of its circuits as described herein will not infringe on exiting or future patent rights, nor do the descriptions contained herein imply the granting of licenses to make, use or sell equipment constructed in accordance therewith. Besides, the product in this document is not designed for use in life support appliances, devices, or systems where malfunction of this product can reasonably be expected to result in personal injury. BiTEK customers' using or selling this product for use in such applications shall do so at their own risk and agree to fully indemnify BiTEK for any damage resulting from such improper use or sale. At last, the information furnished in this document is the property of BiTEK and shall be treated as highly confidentiality; any kind of distribution, disclosure, copying, transformation or use of whole or parts of this document without duly authorization from BiTEK by prior written consent is strictly prohibited. The receiver shall fully compensate BiTEK without any reservation for any losses thereof due to its violation of BiTEK's confidential request. The receiver is deemed to agree on BiTEK's confidential request therein suppose that said receiver receives this document without making any expressly opposition. In the condition that aforesaid opposition is made, the receiver shall return this document to BiTEK immediately without any delay. -Version A4 #### General Description: The B4N60D is the N-Channel logic enhancement mode power field effect transistors to provide excellent $R_{DS}(on)$, low gate charge and low gate resistance. It's up to 600V operation voltage is well suited in switching mode power supply, SMPS, notebook computer power management and other battery powered circuits. #### Pin layout #### Features: - $R_{DS(ON)}$ =2.2 $\Omega@V_{GS}$ =10V (N-Ch) - Super high cell density design for extremely low R_{DS(ON)} - Exceptional on-resistance and maximum DC current #### Applications: - Switching power supply, SMPS - Battery Powered System - DC/DC Converter - DC/AC Converter - Load Switch N-Channel MOSFET #### **Absolute Maximum Ratings** (T_A =25 $\mathcal C$ Unless Otherwise Noted): | Parameter | | Symbol | Maximum | Unit | |--------------------------------------|---------|-----------------|------------|----------------------| | Drain-Source Voltage | | V_{DSS} | 600 | V | | Gate-Source Voltage | | V_{GSS} | ±30 | V | | Continuous Drain | Tc=25°C | 1 | 4 | Α | | Current(Tj=150°C)* | Tc=70°C | I _D | 2.6 | | | Pulsed Drain Current | | I _{DM} | 12 | Α | | Single Pulsed Avalanche Energy | | EAS | 260 | mJ | | Maximum Power Dissipation | | P _D | 36 | W | | Operating Junction Temperature | | TJ | -55 to 150 | $^{\circ}\mathbb{C}$ | | Thermal Resistance-Junction to Case* | | $R_{ heta JC}$ | 3.5 | °C/W | ^{*}The device mounted on 1in2 FR4 board with 2 oz copper #### **Electrical Characteristics** (T_A =25 $^{\circ}$ Unless Otherwise Specified): | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |---------------------|--------------------------------------|--|-----|------|------|---------| | STATIC | | | | | | | | V _{DS} | Drain-Source Breakdown Voltage | V_{GS} =0V, I_D =250 μ A | 600 | 650 | | V | | V _{GS(th)} | Gate Threshold Voltage | $V_{DS}=V_{GS}, I_{D}=250 \mu$ A | 2.5 | 3.5 | 4.5 | V | | I _{GSS} | Gate Leakage Current | $V_{DS}=0V$, $V_{GS}=\pm30V$ | | | ±100 | nA | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} =480V, V _{GS} =0V | | | 100 | μ A | | R _{DS(ON)} | Drain-Source On-Resistance
Note 1 | V _{GS} =10V, I _D = 2A | | 2.2 | 2.5 | Ω | | V _{SD} | Diode Forward Voltage | I _S =3.2A | | 1.1 | 1.4 | V | | DYNAMIC | | | | | | | | Ciss | Input capacitance | | | 500 | 650 | pF | | Coss | Output Capacitance | V _{DS} =25V, V _{GS} =0V,
f=1.0MHz, Note 2 | | 55 | 75 | | | Crss | Reverse Transfer Capacitance | 1-1.00012,10002 | | 8 | 11 | | | Qg | Total Gate Charge | V _{DS} =480V, V _{GS} =10V,
I _D =3.2A, Note 2 | | 14.5 | 19 | | | Qgs | Gate-Source Charge | V _{DS} =300V, V _{GS} =10V, | | 3.4 | 5.1 | nC | | Qgd | Gate-Drain Charge | I _D =4A, Note 2 | | 7 | 10 | | | td(on) | Turn-On Delay Time | | | 11 | 35 | | | tr | Turn-On Rise Time | VDD=300V, I _D =3.2A | | 20 | 30 | ne | | td(off) | Turn-Off Delay Time | $R_G=25\Omega$, Note 2 | | 30 | 55 | ns | | tf | Turn-Off Fall Time | | | 20 | 65 | | #### Notes: - 1. Pulse test; pulse width \leq 300us, duty cycle \leq 2% - 2. Guaranteed by design #### Typical Characteristics (TJ =25 ℃ Noted): #### Maximum forward biased safe operating area #### Soldering Information #### **Reflow Soldering:** The choice of heating method may be influenced by plastic QFP package). If infrared or vapor phase heating is used and the package is not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C. Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stenciling or pressure-syringe dispensing before package placement. Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method. Typical reflow peak temperatures range from 215 to 270 $^{\circ}$ C depending on solder paste material. The top-surface temperature of the packages should preferable be kept below 245 $^{\circ}$ C for thick/large packages (packages with a thickness \geq 2.5 mm or with a volume \geq 350 mm³ so called thick/large packages). The top-surface temperature of the packages should preferable be kept below 260 $^{\circ}$ C for thin/small packages (packages with a thickness < 2.5 mm and a volume < 350 mm³ so called thin/small packages). | Stage | Condition | Duration | |------------------|------------------|------------| | 1'st Ram Up Rate | max3.0+/-2°C/sec | - | | Preheat | 150℃~200℃ | 60~180 sec | | 2'nd Ram Up | max3.0+/-2°C/sec | - | | Solder Joint | 217°C above | 60~150 sec | | Peak Temp | 260 +0/-5℃ | 20~40 sec | | Ram Down rate | 6°C/sec max | - | #### Wave Soldering: Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems. #### **Manual Soldering:** Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C. #### Package Information: ### TO-252 Package Type I | SYMBOL | MILLIMETERS | | INC HES | | | |------------|-------------|--------|---------|-------|--| | STWIBOL | MIN | MAX | MIN | MAX | | | Α | 2.250 | 2.350 | 0.089 | 0.093 | | | A 1 | 0.950 | 1.050 | 0.037 | 0.041 | | | С | 0.490 | 0.530 | 0.019 | 0.021 | | | E | 6.400 | 6.600 | 0.252 | 0.260 | | | E2 | 5.300 | 5.450 | 0.209 | 0.215 | | | D | 6.000 | 6.200 | 0.236 | 0.244 | | | D2 | 7.100 | 7.300 | 0.280 | 0.287 | | | Н | 9.700 | 10.100 | 0.382 | 0.398 | | | L | 0.600 | Ref | 0.024 | Ref | | | L1 | 1.425 | 1.625 | 0.056 | 0.064 | | | L2 | 0.650 | 0.850 | 0.026 | 0.033 | | | L3 | 0.020 | 0.120 | 0.001 | 0.005 | | | b | 0.770 | 0.850 | 0.030 | 0.033 | | | b1 | 0.840 | 0.940 | 0.033 | 0.037 | | | Р | 2.290 | BSC | 0.090 | BSC | | ### **TO-252 Package Type II** | SYMBOL | MILLIMETERS (mm) | | | | |---------|------------------|-------|--|--| | STWIBOL | MIN | MAX | | | | Α | 2.00 | 2.50 | | | | A1 | 0.90 | 1.30 | | | | В | 0.50 | 0.85 | | | | B1 | 0.50 | 0.80 | | | | B2 | 0.50 | 1.00 | | | | С | 0.40 | 0.60 | | | | D | 5.20 | 5.70 | | | | D2 | 6.50 | 7.30 | | | | D3 | 2.20 | 3.00 | | | | Н | 9.50 | 10.50 | | | | E | 6.30 | 6.80 | | | | E2 | 4.50 | 5.50 | | | | L | 1.30 | 1.70 | | | | L1 | 0.90 | 1.70 | | | | L2 | 0.50 | 1.10 | | | | L3 | 0 | 0.30 | | | | P | 2.00 | 2.80 | | | ## **TO-252 Package Type III** | COMMON DIMENSIONS | | | | | |-------------------------------|--|---|--|--| | (UNITS OF MEASURE=MILLIMETER) | | | | | | MIN | NOM | MAX | | | | 2.20 | 2.30 | 2.38 | | | | 0 | - | 0.10 | | | | 0.90 | 1.00 | 1.10 | | | | 0.77 | - | 0.89 | | | | 0.76 | 0.81 | 0.86 | | | | 0.77 | - | 1.10 | | | | 5.23 | 5.33 | 5.43 | | | | 0.47 | - | 0.60 | | | | 0.46 | 0.51 | 0.56 | | | | 0.47 | _ | 0.60 | | | | 6.00 | 6.10 | 6.20 | | | | 5.25 | - | - | | | | 6.50 | 6.60 | 6.70 | | | | 4.70 | - | - | | | | | | | | | | 9.80 | 10.10 | 10.40 | | | | 1.40 | 1.50 | 1.70 | | | | 2.90REF | | | | | | 0.51BSC | | | | | | 0.90 | - | 1.25 | | | | 0.90 | - | 1.50 | | | | 1.80REF | | | | | | 0. | - | 8, | | | | 3. | 5* | 7* | | | | | MIN 2.20 0 0.90 0.77 0.76 0.77 0.76 0.47 6.00 5.25 6.50 4.70 9.80 1.40 0.90 0.90 0.90 0.90 0.90 0.90 | MEASURE=MILLIA MIN NOM 2.20 2.30 0 - 0.90 1.00 0.77 - 0.76 0.81 0.77 - 5.23 5.33 0.47 - 6.00 6.10 5.25 - 6.50 6.60 4.70 - 2.28BSC 9.80 9.80 10.10 1.40 1.50 2.90REF 0.51 BSC 0.90 - 1.80REF 0.90 ES | | |