One-chip Multifunction Voltage Regulator

IK8001

FEATURES

- ♦ Fully monolithic design
- ♦ High side field driver
- ◆ LRC function and soft start
- ♦ ECU control via L terminal
- ♦ Field driver short circuit protection
- Under and overvoltage protection
- ♦ Self-start with open L terminal circuit
- ♦ Thermal shut down function

The IK8001 is a monolithic alternator voltage regulator IC intended for use in automotive application. It includes the control section, the field power stage and the protection against short circuits. IC regulates the output voltage of an automotive generator in close loop by control the field winding current with a Pulse-Width Modulation (PWM) high side driver at fixed frequency. The set-point voltage reference selected by the Engine Control Unit (ECU) via L-terminal protocol is temperature flat. The alternator voltage regulator IC has the standby mode with small current consumption.

Table 1. Device Summary.

Order Code	Operating Temp range, T _J , ⁰C	Package
IK8001	-40 to 150 °C	Bare die
IK8001D0T	-40 to 150 °C	TO 220-7
IK8001D2T	-40 to 150 °C	TO 263-7

Contents Schematic diagram and pin description 1 3 1.1 Block diagram 3 1.2 Pin description 3 2 **Electrical specifications** 4 2.1 Absolute maximum rating 4 2.2 Thermal data 4 2.3 Electrical characteristics 5 **Brief functional description** 3 7 4. 12 **Application chart** 5 **EMC** Test specification 13 6 **State Diagram** 14 7 Recommendation for assembly of chip 17 8 Package information and pinout 19 **Revision history** 9 21

1. Schematic diagram and pin description.

1.1 Schematic diagram.

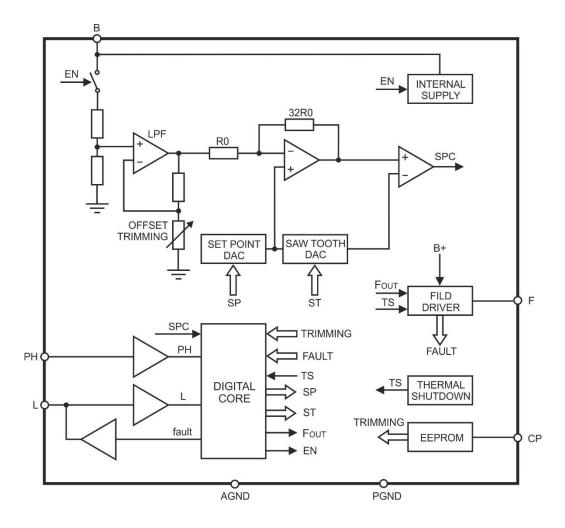


Fig. 1. Block diagram.

1.2. Pin description.

Table 2. Pin description.

Pin	Function	Remark
В	Power supply pin and battery sense	
PGND	Regulator power stage ground	
AGND	Regulator analog part ground	
F	High side driver output	
PH	Phase sense terminal	
L	L-Terminal (PWM signal input coming from ECU)	
СР	Production line programming pin (internal pad)	

2. Electrical specifications.

2.1. Absolute maximum ratings.

Table 3. Absolute maximum ratings.

(Tj= -40 to 150 $^{\circ}$ C, unless otherwise specified.)

Symbol	Symbol Parameter Value Unit	Value	Unit
VBoc	DC supply voltage (2 min. @ 25 °C)	24	V
VBLD	Transient supply voltage (load dump) t < 500 ms	45	V
VB _{MAX}	Transient supply voltage with 1A load and t < 1 ms	55	V
L	Transient supply voltage (low energy spikes) ISO7637-1 pulse 1,2,3 / ISO7637-3	55	V
PH	Transient supply voltage (low energy spikes) ISO7637-1 pulse 1,2,3 / ISO7637-3		
Tj	Junction temperature range	- 40 to 150	ů
ESDнвм	ESD HBM (All pins vs. GND)	± 4	kV

2.2. Thermal data.

Table 4. Thermal data.

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Tj-sd	Thermal shutdown threshold	Temperature to disable F	160	175	190	°C
Tj-sdhy	Thermal shut- down hysteresis	F from OFF STATE (due to thermal shutdown) to ON STATE	Tj-sd - 10	-	Tj-sd - 2	°C

2.3 Electrical characteristics.

Table 5. Electrical characteristics (Tj= -40 to 150 °C, unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
		Pin "B"				
VBovr	Operating Voltage Range	Normal condition Function Fm	6	-	18	V
V_{UVLOon}	Under Voltage Lock Release		4.5	5.0	5.5	V
V_{UVLOoff}	Under Voltage Lock ON		4.0	4.5	5.0	>
V_{UVLOhyst}	Under Voltage Lock Out Hysteresis		-	0.5	-	>
IB stby	Stand-by current consumption	VB=12.5V; VPH=0V; L pin floating; T _j =25±5°C	_	_	250	uA
VBDSP	Default Set-Point Voltage	VPH=10Vpp square wave (400hz) , "L" floating @ Tj=30°C "F" duty cycle=50%	13.7	13.8	13.9	V
VB _{SP}	Set-Point Voltage	VPH=10Vpp square wave; (400hz), Duty Cycle @ Tj=30°C;	14.5	14.6	14.7	V
		"F" duty cycle=50%	See F	See Fig.6 (C=75% duty,128hz		y,128hz)
VВтр	Thermal Drift	See fig. 3	-4	0	4	mV/°C
ΔVB load	Regulated Voltage variation with the load @Alternator level	Difference between regulated voltage @ F duty cycle is 10% and @ F duty cycle is 90%	_	_	250	mV
ΔVB_{speed}	Speed regulation @Alternator level	15A load, 2k~10k rpm variation	_	_	100	mV
VB_{wb}	Regulation without battery @Alternator level	10k rpm with full load @ 25°C	-0.5	Vset	+0.5	V
VB _{ovp}	Overvoltage protection threshold	Fault condition, DC = 0%.	16.5		22.0	V
		Pin "L"				
VL _{HTh}	High Level Threshold	Normal condition from ECU	3.1	3.3	3.5	V
	Voltage	Alarm condition	0.29	0.34	0.39	V
VL _{LTh}	Low Level Threshold Voltage	Normal condition from ECU	1.5	1.7	1.9	V
		Alarm condition	0.11	0.16	0.21	V
VL _{OH}	Generator fault signal threshold	Alarm condition from Alternator @ 10.0 mA			1.0	V

Symbol	Parameter	Test Co	ondition	Min.	Тур.	Max.	Unit
R _{IN}	Input Impedance to Ground	See Fig.6		6	-	10	kΩ
R_{GPD}	Low Side Driver Grounding Resistor	See Fig.6		30	60	90	Ω
fL _{VR}	Valid Frequency Range			115	128	140	Hz
TLdelay	Delay time to switch between VB _{DSP} and VB _{SP}	See Fig. 5		30	50	100	ms
DLEDCR	External Duty Cycle Range	See Fig. 4		5	-	95	%
DL _{LTh}	Low Default/External Regions transition threshold			3	5	7	%
DLнтh	High Default/External Regions transition threshold			93	95	97	%
	F	Pin "PH" for m	nulti pole-typ	е			
VP _{HTh}	High voltage threshold	Direct Field		350	400	450	mV
VP_{LTh}	Low voltage threshold			250	300	350	mV
fP _{HPrex}	High Frequency	Based on 12 poles		64	72	80	Hz
	Threshold to exit pre- excitation	Based on 14 poles		75	84	93	Hz
	excitation	Based on 16 poles		85	96	107	Hz
fP_{LPrex}	Low Frequency	Based on 12 p	oles	54	60	66	Hz
	Threshold to enter pre-excitation	Based on 14 p	Based on 14 poles		70	77	Hz
	pro exercation	Based on 16 poles		72	80	88	Hz
fP _{LRC}	Frequency Threshold	Based on 12 poles		294	310	326	Hz
	to exit/enter in LRC	Based on 14 p	oles	344	362	380	Hz
		Based on 16 p	oles	392	413	434	Hz
VP _{prTh}	Phase Regulation Voltage threshold			7	8	9	V
IP _{SINK}	Sink current on PH pin	VP=0.3V VP=10V		3 -	5.5 11	- 8	mA
		Pin	"F"				
VF _{sat}	Field Driver	T _j =130°C; Isinl	<=4.5A	_	_	0.6	V
	saturation voltage	T _j =25°C; Isink=7A		-	_	0.55	V
VF _{diode}	Freewheeling diode	IF =6A, T _i =25°C		_	_	2	V
IF leak	Field leakage current	VB=16V; VF=0	VB=16V; VF=0			150	μΑ
IF _{CL}	Field driver current	T _j = -40°C ~	- 40°C	9.5	-	18	Α
	limitation	T _j = 150°C	27°C	9	-	18	Α
_							

Symbol	Parameter	Test Co	ndition	Min.	Тур.	Max.	Unit
			150°C	8	-	18	Α
fFsw	Field switching frequency			360	400	440	Hz
TFrise	Field voltage rise time			_	_	25	μs
TF _{fall}	Field voltage fall time			_	_	25	us
DF _{Preex}	Field duty cycle in pre-excitation	Selectable by E	EEPROM		0 / 14 / 18 26 / 30 / 3		%
DF _{Preexself}	Field duty cycle in pre-excitation at Self-start mode	14		%			
TFLRCUP	Load Response Control Time (from 0% to 100% DC)	Selectable by EEPROM		0/2.5/5/8/10		S	
TF _{soft}	Soft Start after cranking Time(from0% to 100% DC)	Selectable by EEPROM		0/2.5/5/8/10			S
DFLRCBZ	Blind Zone	Selectable by EEPROM 3 / 6			%		
MFDC	Minimum Field Duty Cycle			5	-	7	%
Talarm_val	Fault or Recovery validation time			0.9	1	1.1	S
V_{under_vol}	Undervoltage warning @ under 9.5 of VB & fPH > 300hz			8.0	9.0	10.0	V
TF _{retry}	Retry time in case of over-current	Over-current, Threshold Retry time		20	25	30	ms
FD_pk	Peak Duty Fluctuation	0~100% load @alternator level				10	%

3. Brief functional description

The device, supplied by the battery through "B" pin, remains in "stand-by" condition with a low current consumption until there is no activity on the pins "L" or "PH".

When the switch "Key" is closed the ECU communicates via L-Terminal protocol through "L" pin (i.e. signal freq. on "L" pin 128Hz) the device exits "stand-by" condition and goes in "pre-excitation" characterized by an activity on "F" pin with fixed frequency (fF_{sw}) and duty cycle (DF_{Preex}).

The device remains in "pre-excitation" until the alternator does not run. When an activity is sensed on "PH" pin (i.e. VPH>VP_{HTh} and fPH>fP_{HPrex}) the device starts to regulate in according with Fig.6.

Another possibility that the device has to start to regulate is the "self start". In this way, although there is no activity on pins "L" (for example due to connector open), if an activity is sensed on "PH" pin (i.e. VPH>VP $_{HTh}$ and fPH>fP $_{HPrex}$) the device goes in "self start" characterized by an activity on "F" pin with fixed frequency (fF $_{SW}$). When the frequency on "PH" pin rises above fP $_{LRC}$ the device starts to regulate.

The regulator stops to regulate when the frequency on "PH" pin falls below fP_{LPrex}. If there is activity on "L" pins the device stays in "pre-excitation" otherwise comes back in "stand-by".

Alarm detection

The device goes into Alarm (Fault) mode after the validation time (Talarm_val) if one of the conditions in the below table is verified.

Table 6. Alarm Detection.

Detection condition	Related pin
VPH <vp<sub>HTh or PH frequency < fP_{LPrex}</vp<sub>	No activity on "PH" pin
VPH< VP _{prTh} and VB<(VB _{DSP} , VB _{SP})	"F" driver or its connection degraded
IF>IFcL	"F" shortened to "GND" (Over-current on "F" driver)
VB=VF @Field-FET off	"F" shortened to "B"
VB>VB _{ovp}	Battery sensor on "B" pin or "F" driver degraded
VBunder_vol > VB & fPH > fPLRC	B+ voltage is under VB _{under_vol}

Load Response Control function (LRC)

When an electrical load is applied in the system application, a drop in the regulated voltage (VB) occurs and the alternator reacts increasing output current.

If the LRC function is active then the alternator output current is controlled by the Field current variation strategy that is directly linked to the duty cycle on Field signal.

The LRC function can operate when the alternator runs at low speed (the "PH" signal frequency as to be lower than fP_{LRC}).

When the LRC function is required, the duty cycle increase slowly with the defined slope DF_{LRCUP} starting with the previous duty cycle increased by the fixed value DF_{LRCBZ}.

The actual duty cycle management during a LRC insertion is shown in the figure 2.

Soft Start Function after engine cranking (TF_{soft})

After engine cranking and the speed of alternator above fP_{HPrex}, the voltage regulator shall limit the rate of increase of the field duty cycle to avoid sudden increases in engine load. This limitation rate is known as Load Response Control (LRC).

Fig. 2. Duty cycle management during LRC insertion.

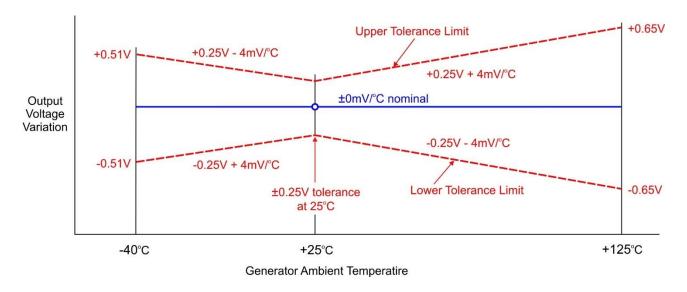


Fig. 3. Temperature compensation.

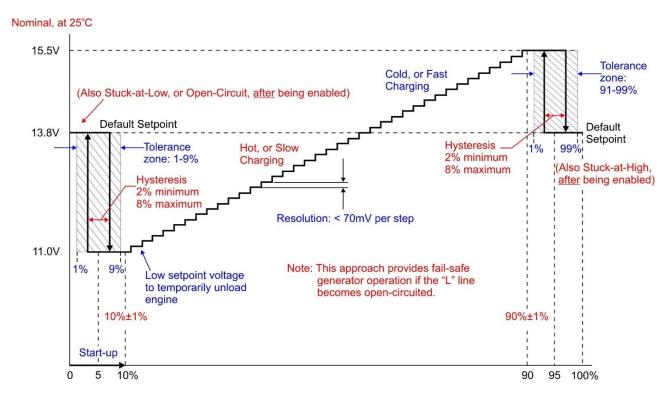


Fig. 4. Set-point voltage for RVC.

VSET can calculate by formula:

The slope of VSET selects by EEPROM – slope trimming bits.

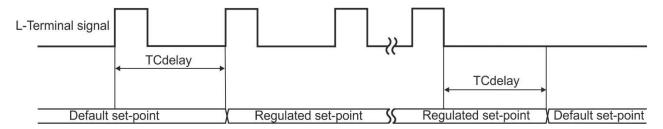


Fig. 5. L terminal wave form.

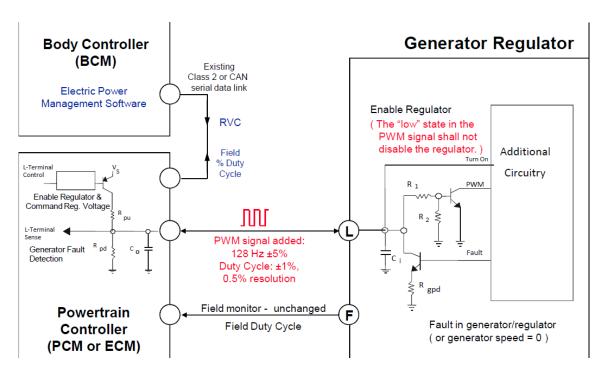


Figure 6. Circuit for L-terminal of RVC.

4. Application chart.

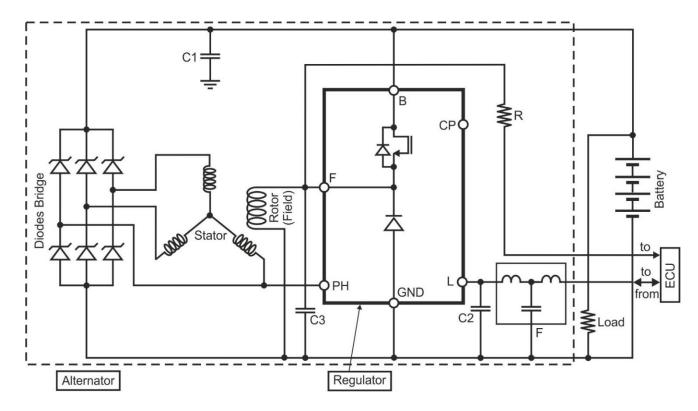


Fig. 7. Application circuit.

Notes:

Rectification diodes should have the break down voltage more 22 V and less 27 V. In opposite case the IK8001 should be protected by TVS. Operation voltage for TVS should be more 20 V but break down TVS voltage should be between 25 V and 35 V.

Parasitic resistance on pin B should be less 20 mOhm and on pin GND should be less 10 mOhm.

Recommended:

C1 = 2.2 uF + 2.2 uF + 4.7 uF

C2 = 10 nF;

C3 = 47 nF;

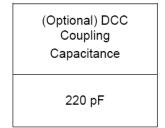
R = 10 kOhm.

F is three terminal filter ACH32C-222 by TDK company

5. EMC Test specification.

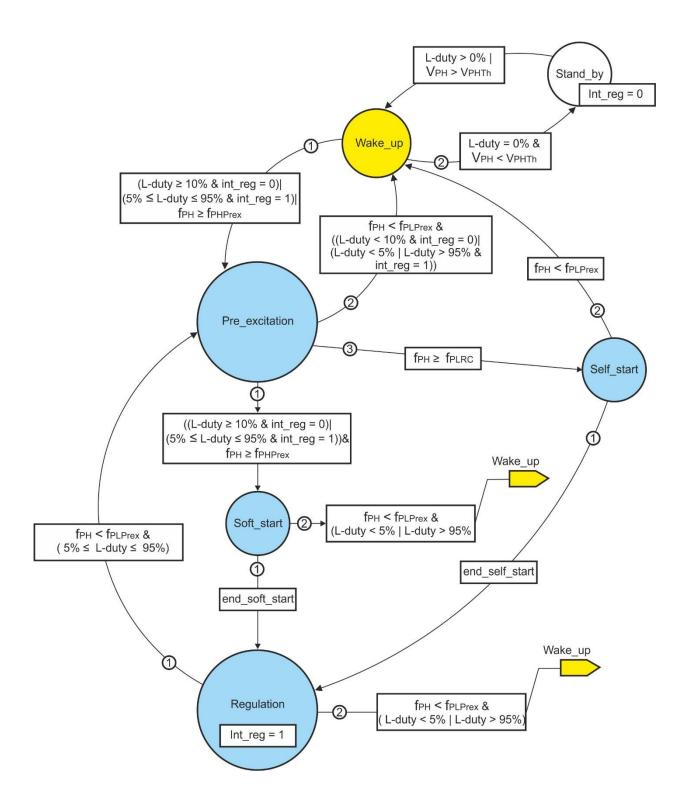
This IC has to comply with following guideline of EMC test. Please see ISO7637-2 and ISO7637-3 for details.

4.1 Guideline of transient test for B-terminal.


Table 7. Requirements Levels for the Immunity to Transients on Power Lines.

Pulse Number	Level	Minimum Number of Pulses or Application Time		e Cycle me	Comments
1	Us = - 150Vpeak	500 pulses	0.5s	5s	One or more functions of the DUT can go beyond specified tolerance as long as all functions return within normal limits after the exposure is removed. Memory functions shall perform as designed.
2a	+50Vpeak	500 pulses	0.5s	5s	2Ω transient generator internal source impedance
2b	+10Vpeak	10 pulses	0.5s	5s	There shall be 10 pulses, beginning at 200 ms pulse width, then increasing pulse width by 200 ms steps until 2000 ms is achieved.
3a	-200Vpeak	10 minutes	90ms	110ms	Injection level established into a 50 ohm load (as opposed to the open-circuit measurement as specified in ISO 7637-2).
3b	+100Vpeak	10 minutes	90ms	110ms	Injection level established into a 50 ohm load (as opposed to the open-circuit measurement as specified in ISO 7637-2).
4	ISO 7637-2	1 pulse of each severity level	0.5s	15s	Voltage levels and Performance Criterion for Pulse 4 (crank pulse).
5b	peak	10 pulses	15s	2min	No permanent DUT performance deviations shall be observed after exposure to a load dump pulse with a suppressed open circuit voltage of $(34+0/-1)V$, Ri = 2Ω .
7	-50Vpeak	500 pulses	0.5s	5s	2Ω transient generator internal source impedance

5.2 Guideline of transient test for L terminal


Table 8. Requirements of Coupling Clamp and (optional) Direct Pin Capacitive Coupling (DCC).

Pulse No.	Level (Vpeak) ^{Note 1}	Application Time	Default Time Between Pulses
3a	-450	10 minutes	90 ms
3b	+450	10 minutes	90 1115

6. State Diagram (For reference only).

Note:

- 1. Stand_by mode means low consumption current state;
- 2. Int_reg = 0 is enabling mode, Int_reg = 1 is running mode.
- 3. Wake_up mode means Field Duty = 0 and IC monitors L and PH pins;
- 4. Pre-excitation mode means: DF=6%, 10%, 14%, 18%, 22%, 26%, 30%, 34%. Value of DF is selected by EEPROM.
- 5. End_soft_start (end_self_start) means DF achieves 100% or VB=VBsp
- 6. Regulation mode corresponds with Figure 4;
- 7. Alarm mode corresponds with Table 6.

Table 9. Operating mode IK8001 vs L-duty and fPH.

		Frequency PH (fPH)			
Mode	L-duty, %	0≤fPH <fp<sub>XPrex</fp<sub>	fP _{XPrex} ≤fPH <fp<sub>LRC</fp<sub>	fPH≥fP _{LRC}	
Enabling (Engine start-up	0≤L-duty<10	Field off	Pre-excitation	Normal regulation (Self start)	
with rpm ramping up)	L-duty≥10	Pre-excitation	Normal regulation (Soft start, LRC)	Normal regulation	
Running	0≤L-dutyt<5	Field off	Normal regulation (LRC)	Normal regulation	
(Generator has previously been	5≤L-duty≤95	Pre-excitation	Normal regulation (LRC)	Normal regulation	
enabled)	L-duty>95	Field off	Normal regulation (LRC)	Normal regulation	

Note:

- 1. fPXPrex=fPHPrex for exit in pre-excitation mode.
- 2. fPXPrex=fPLPrex for enter in pre-excitation mode.
- 3. Setpoint voltage in normal regulation mode is adjusted proportional to L-duty in accordance with Figure 4.

Table 10. Operating mode IK8001 vs fL frequency and fPH frequency (For reference only).

Generator	Frequency L		Frequency PH (fPl	٦)
mode	(fL)	0 ≤ fPH < fP _{XPrex}	$fP_{XPrex} \le fPH < fP_{LRC}$	fPH ≥ fP _{LRC}
Fachling	1Hz ≤ fL ≤ fL _{VALID MIN} for all L-duty	Field off	Pre-excitation	Normal regulation, Self-start, Default set-point
Enabling (Engine start-up with rpm	fL _{VAID MAX} ≤ fL ≤ 1KHz for all L-duty	Field off	Pre-excitation	Normal regulation, Self start, Default set-point
With Tpin	115Hz ≤ fL ≤ 140Hz	d fPH (see Table 9)		
ramping up)	fL < 1Hz & t _{high level} > 1s	Pre-excitation if L – high; Field off if L – low.	Normal regulation, Soft start, LRC, Default set-point.	Normal regulation, Default set-point.
Running (Generator has	1Hz ≤ fL ≤ fL _{VALID MIN} for all L-duty	Field off	Normal regulation, LRC, Default set- point.	Normal regulation, Default set-point
previously been enabled)	$fL_{VAID\ MAX} \le fL \le 1KHz$ for all L-duty	Field off	Normal regulation, LRC, Default set- point.	Normal regulation, Default set-point
	115Hz ≤ fL ≤ 140Hz	According mode	e IK8001 vs L-duty and	d fPH (see Table 9)
	fL < 1Hz & t _{high level} > 1s	Field off	Normal regulation, LRC, Default set- point.	Normal regulation, Default set-point

Note:

- 1. $fP_{XPrex} = fP_{HPrex}$ for exit in pre-excitation mode.
- 2. $fP_{XPrex} = fP_{LPrex}$ for enter in pre-excitation mode.

7. Recommendation for assembly of chip.

Pad location.

Chip size: X = 4500 um, Y = 5300 um.

5		7
6		4
1		3
	2	

The chip size is given without size of the Scribe Line.

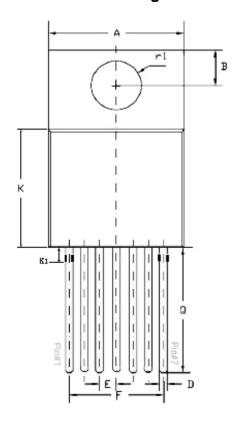
Coordinates of the Pads ("POR" layer)

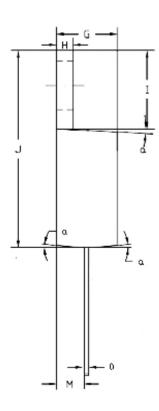
PAD Number	X, um	Y, um	Pin Name
1	161.6	949.1	В
2	2045.6	121.6	F
3	3048.6	1010.4	PGND
4	3708.6	2130.4	AGND
5	3671.6	4436.6	СР
6	55.6	2913.9	РН
7	53.4	4387.4	L

Wire bonding pad size are:

- 1. 700.0 x 700.0 um on metal layer "MET3";
- 2. 690.8 x 690.8 um on POR layer.

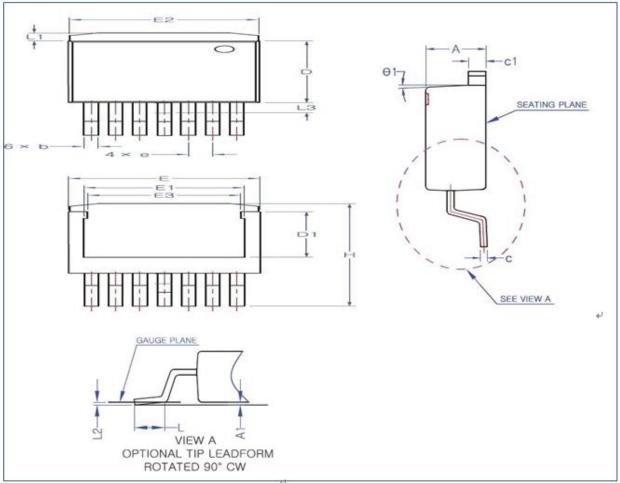
Note:


- 1) Wafer thickness is 406 um typical.
- 2) Back side of wafer is under GND voltage. Back side metal should be connected to GND pad.
- 3) Die bonding should be made by soldering alloy with melting point more 220°C or silver epoxy compound with thermal conductivity more 50 W/K*m.


Recommended to use the tin-silver-copper alloy with 3.0-4.0% of silver.

- 4) Back side metal is TiW 0.4 um Au 0.08 um.
- 5) Top level metal thickness is 2.7 um typical.
- 6) Wire thickness should be more 0.2 mm.

8. TO – 220 -7L Package Outline Dimension



Unit: mm

符号	Min	Max	符号	Min	Max
A	10. 0	10. 5	J	14.8	15. 5
В	2. 65	2.85	K	8. 2	8. 7
D	0. 65	0. 75	K1	3. 0	3. 3
E	1. 2	1. 4	М	2. 3	2. 7
F	7. 4	7.8	0	0.4	0. 5
G	4.3	4. 5	Q	9. 6	10.6
H	1.3	1.4	r1	1.85	1. 95
I	6. 2	6. 7			

9. TO-263-7L Package Outline Dimension

SYMBOL	min	avg	max
А	4.30	4.50	4.70
A1	0.00		0.25
b	0.65	0.75	0.90
С	0.40	0.50	0.60
c1	1.25	1.30	1.40
D	9.00	9.20	9.40
D1	6.70	6.80	6.90
Е	9.80	10.00	10.20
E1	8.30	8.40	8.50
E2	9.70	9.90	10.10
E3		8.00	
е		1.27BSC	
Н	15.00	15.30	15.60
L	2.30	2.55	2.80
L1	1.00	1.20	1.50
L2		0.254BSC	
∮1		3′	

Table 11. Pinout and description.

Pin	Symbol	Description
1	СР	For EEPROM programming
2	L	L-Terminal (PWM signal input coming from ECU)
3	PH	Phase sense input
4	GND	Regulator ground
5	В	Device power supply and Battery voltage sensing
6	NC	Not connect
7	F	High side driver output to control the Field current

