

2CLG150KV/1A

1.0A 150kV 100nS--High voltage silicon rectifier stack

HVGT High voltage silicon rectifier is made of high quality glass passivated chip and high reliability epoxy resin sealing structure, and through professional testing equipment inspection qualified after to customers.

FEATURES:

- 1. High reliability design.
- 2. High voltage design.
- 3. High frequency design..
- 4. Conform to RoHS.
- 5. Epoxy resin molded in vacuumHave anticorrosion in the surface.

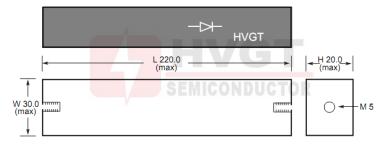
APPLICATIONS:

- 1. High frequency switching power supply.
- 2. Power supply of laser equipment.
- 3. General purpose high voltage rectifier.
- 4. Other.

MECHANICAL DATA:

- 1. Case: epoxy resin molding.
- 2. Terminal: external lead.
- 3. Net weight: 213 grams (approx).

SHAPE DISPLAY:



SIZE: (Unit:mm)

HVGT NAME: HVC-223020

HVC-223020 Series

Screw Holes M5

Unit:mm

MAXIMUM RATINGS AND CHARACTERISTICS: (Absolute Maximum Ratings)

Items	Symbols	Condition	Data Value	Units
Repetitive Peak Renerse Voltage	Vrrm	Ta=25°C;	150	kV
Average Output Current	I_{F}	Ta=25°C;Resistive Load	1.0	A
Suege Current	Ifsм	Ta=25°C;8.3 mS	30	A
Junction Temperature	TJ		-40~+125	°C
Allowable Operation Case Temperature	Тс		125	°C
Storage Temperature	Тѕтс		-40~+125	°C

ELECTRICAL CHARACTERISTICS: Ta=25°C (Unless otherwise specified)

Items	Symbols	Condition	Data value	Units
Maximum Forward Voltage Drop	VF	at 25°C;I _F =I _{F(AV)}	216	V
Maximum Reverse Current	I _R 1	at 25°C;VR =VRRM	5.0	uA
	Ir2	at 100°C;V _R =V _{RRM}	50	uA
Maximum Reverse Recovery Time	T_{RR}	at 25°C; I _F =0.5I _R ; I _R =I _{FAVM} ; I _{RR} =0.25I _R	100	nS
Junction Capacitance	CJ	at 25°C; V _R =0V; f=1MHz		pF