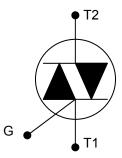

BT134T


TRIAC

APPLICATIONS

- For use in high bidirectional transient and blocking voltage applications
- For high thermal cycling performance
- Typical application include motor control, industrial and domestic lighting, heating and static switching

TO-126 Plastic Package

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
Repetitive Peak Off State Voltage	V _{DRM}	600 ¹⁾	V	
RMS on State Current Full Sine Wave, T _{mb} ≤ 107 ºC	I _{T(RMS)}	4	А	
Non-Repetitive Peak on State Current $t = 20 \text{ ms}$ Full Sine Wave, $T_J = 25 \degree C$ Prior to Surge $t = 16.7 \text{ ms}$	I _{TSM}	25 27	А	
$I^{2}t$ for Fusing t = 10 ms	l ² t	3.1	A ² s	
Repetitive Rate of Rise of on State Current after Triggering $I_{TM} = 6 \text{ A}$, $I_G = 0.2 \text{ A}$, $dI_G/dt = 0.2 \text{ A}/\mu \text{s}$		50		
T2+ G+ T2+ G-	dl⊤/dt	50 50	A/µs	
T2- G- T2- G+		50 10		
Peak Gate Current	I _{GM}	2	А	
Peak Gate Voltage	V _{GM}	5	V	
Peak Gate Power	P _{GM}	5	W	
Average Gate Power (Over any 20 ms period)	P _{G(AV)}	0.5	W	
Operating Junction Temperature	Tj	125	°C	
Storage Temperature Range	T _{stg}	-40 to +150	°C	

¹⁾ The rate of rise of current should not excees 3A/µs

TOP DYNAMIC

Characteristics at $T_J = 25 \ ^{\circ}C$

Parameter	Symbol	Min.	Тур.	Max.	Unit
Gate Trigger Current at V_D = 12 V, I_T = 0.1 A T2+ G+ T2+ G- T2- G- T2- G+	I _{GT}	- - -		35 35 35 70	mA
Latching Current at V_D = 12 V, I_{GT} = 0.1 A T2+ G+ T2+ G- T2- G- T2- G+	١	- - -	- - -	20 30 20 30	mA
Holding Current at $V_D = 12 \text{ V}, I_{GT} = 0.1 \text{ A}$	I _H	-	-	15	mA
On State Voltage at $I_T = 5 A$	V _T	-	-	1.7	V
Gate Trigger Voltage at V_D = 12 V, I_T = 0.1 A at V_D = 400 V, I_T = 0.1 A, T_J = 125 °C	V _{GT}	- 0.25		1.5 -	V
Off State Leakage Current at V _D = max, V _{DRM} = max, T _J = 125 °C	Ι _D	-	-	0.5	mA
Critical Rate of Rise of Off State Voltage at V _{DM} = 67% V _{DRM} max, T _J = 125 °C, exponential waveform, gate open circuit	dV _D /dt	100	250	-	V/µs
Critical Rate of Change of Commutating Voltage at V_{DM} = 400 V, T _J = 95 °C, I _{T(RMS)} = 4 A, dI _{com} /dt = 1.8 A/ms, gate open circuit	dV _{com} /dt	-	50	-	V/µs
Gate Controlled Turn On Time at I_{TM} = 6 A, V_D = V_{DRM} max, I_G = 0.1 A, dI_G/dt = 5 A/µs,	t _{gt}	-	2	-	μs

Thermal Resistance

Parameter		Symbol	Value	Unit
Junction to Mounting Base	Full Cycle Half Cycle	$R_{th(j-mb)}$	3 3.7	K/W
Junction to Ambient (typical)	In Free Air	$R_{th(j-a)}$	100 (Тур.)	K/W

TOP DYNAMIC