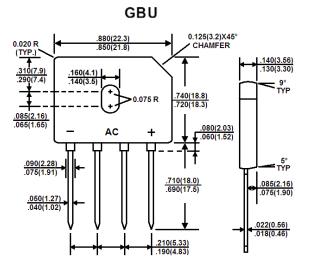
GBU6005 THRU GBU610-HAF

Glass Passivated Single-phase Bridge Rectifiers

Reverse Voltage - 50 to 1000 V


Forward Current - 6 A

Features

- Plastic material has Underwriters Laboratory Flammability Classification 94V-0
- · Ideal for printed circuit boards
- · Glass passivated chip junction
- Reliable low cost construction utilizing molded plastic technique
- Halogen and Antimony Free(HAF), RoHS compliant

Mechanical Data

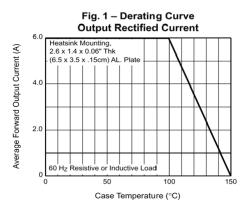
- Case: Molded plastic, GBU
- Terminals: leads solderable per MIL-STD-202 Method 208 guaranteed
- Mounting Position: Any

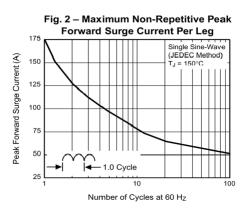
Dimensions in millimeters

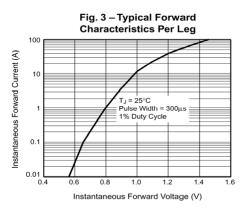
Maximum Ratings and Electrical Characteristics

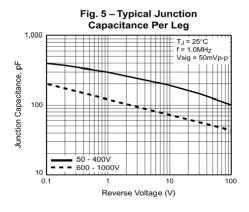
Ratings at 25 °C ambient temperature unless otherwise specified. Single phase, half wave, resistive or inductive load, for capacitive load, derate by 20%

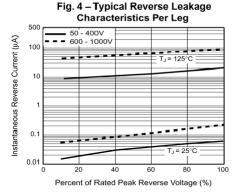
Parameter	Symbols	GBU6005	GBU601	GBU602	GBU604	GBU606	GBU608	GBU610	Unit
Maximum Recurrent Peak Reverse Voltage	V _{RRM}	50	100	200	400	600	800	1000	V
Maximum RMS Voltage	V _{RMS}	35	70	140	280	420	560	700	V
Maximum DC Blocking Voltage	V _{DC}	50	100	200	400	600	800	1000	V
Maximum Average Forward Rectified Current at $T_c = 100 ^{\circ}C^{(1), 2)}$	I _{F(AV)}	6							А
Peak Forward Surge Current, 8.3 ms Single Half Sine-wave Superimposed on Rated Load (JEDEC Method)	I _{FSM}	175						A	
Maximum Forward Voltage at 3 A	VF	1							V
Maximum Reverse Currentat $T_A = 25 ^{\circ}C$ at Rated DC Blocking Voltage $T_A = 125 ^{\circ}C$	I _R	5 500							μΑ
Typical Junction Capacitance ³⁾	CJ		210				94		pF
Typical Thermal Resistance ^{1), 2)}	R _{0JA}	7.4						°C/W	
Typical Thermal Resistance ^{1), 2)}	R _{θJC}	2.2						°C/W	
Operating and Storage Temperature Range	T_{j}, T_{stg}	- 55 to + 150							°C

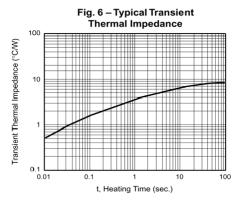

¹⁾ Units case mounted on 2.6 X 1.4 X 0.06" thick (6.5 X 3.5 X 0.15 cm) AI. plate heatsink.


TOP DYNAMIC


²⁾ Recommended mounting position is to bolt down on heatsink with silicone thermal compound for maximum heat transfer with #6 screws. ³⁾ Macagined at 1 MHz and applied reverse voltage of 4.0 VDC


 $^{\rm 3)}$ Measured at 1 MHz and applied $\,$ reverse voltage of 4.0 VDC.





TOP DYNAMIC

Dated :26/08/2016 H Rev:02