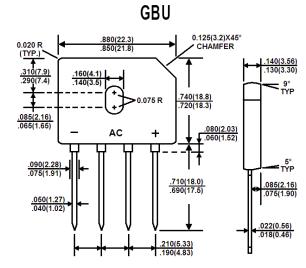
GBU6005 THRU GBU610

Glass Passivated Single-phase Bridge Rectifiers

Reverse Voltage - 50 to 1000 V

Forward Current - 6 A

Features


- Plastic material has Underwriters Laboratory Flammability Classification 94V-0
- · Ideal for printed circuit boards
- · Glass passivated chip junction
- Reliable low cost construction utilizing molded plastic technique

Mechanical Data

· Case: Molded plastic, GBU

• Terminals: leads solderable per MIL-STD-202

Method 208 guaranteed • Mounting Position: Any

Dimensions in millimeters

Maximum Ratings and Electrical Characteristics

Ratings at 25 $^{\circ}$ C ambient temperature unless otherwise specified. Single phase, half wave, resistive or inductive load, for capacitive load, derate by 20%

Parameter	Symbols	GBU6005	GBU601	GBU602	GBU604	GBU606	GBU608	GBU610	Unit
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	50	100	200	400	600	800	1000	٧
Maximum RMS Voltage	V _{RMS}	35	70	140	280	420	560	700	V
Maximum DC Blocking Voltage	V_{DC}	50	100	200	400	600	800	1000	V
Maximum Average Forward Rectified Current at T_C = 100 °C ^{1), 2)}	I _{F(AV)}	6							Α
Peak Forward Surge Current, 8.3 ms Single Half Sine-wave Superimposed on Rated Load (JEDEC Method)	I _{FSM}	175						Α	
Maximum Forward Voltage at 3 A	V _F	1						V	
Maximum Reverse Current at $T_A = 25$ °C at Rated DC Blocking Voltage $T_A = 125$ °C	I _R	5 500							μΑ
Typical Junction Capacitance 3)	С	210			94			pF	
Typical Thermal Resistance 1), 2)	$R_{\theta JA}$	7.4						°C/W	
Typical Thermal Resistance 1), 2)	R ₀ JC	2.2						°C/W	
Operating and Storage Temperature Range	T_j, T_{stg}	- 55 to + 150						°C	

 $^{^{1)}}$ Units case mounted on 2.6 X 1.4 X 0.06" thick (6.5 X 3.5 X 0.15 cm) Al. plate heatsink..

²⁾ Recommended mounting position is to bolt down on heatsink with silicone thermal compound for maximum heat transfer with #6 screws.

³⁾ Measured at 1 MHz and applied reverse voltage of 4.0 VDC.

Fig. 1 – Derating Curve
Output Rectified Current

6.0

Heatsink Mounting,
2.6 x 1.4 x 0.06° Thk
(6.5 x 3.5 x .15cm) AL. Plate

4.0

0

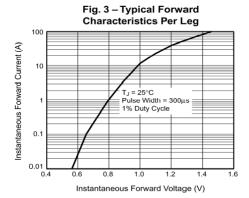
0

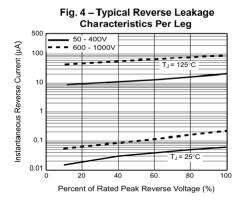
0

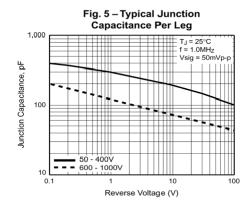
0

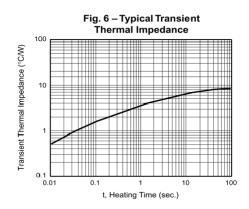
0

0


Case Temperature (°C)


Fig. 2 – Maximum Non-Repetitive Peak
Forward Surge Current Per Leg


Single Sine-Wave (JEDEC Method)
T_J = 150°C


100

Number of Cycles at 60 Hz

