SR2545

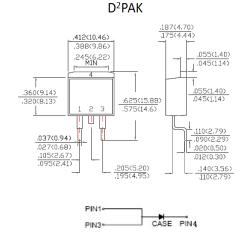
Surface Mount Schottky Barrier Rectifier

Reverse Voltage - 45 V Forward Current - 25 A

Features

- Low Power Loss / High Efficiency
- Low Forward Voltage Drop
- · High Current Capability
- Highly Stable Oxide Passicated Junction
- · Guard-Ring for stress Protection
- High Surge Capability

Mechanical Data


Case: Molded plastic, D²PAK

Epoxy: UL 94V-0 rate flame retardant

Lead: Axial leads, solderable per MIL-STD-202, method 208 guaranteed

Polarity: As marked

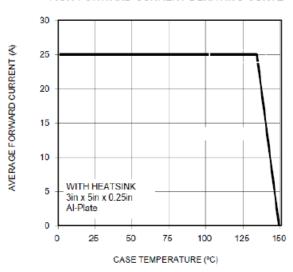
Mounting position: Any

Dimensions in inches and (millimeters)

Maximum Ratings and Electrical characteristics

Ratings at 25°C ambient temperature unless otherwise specified.

Single phase half-wave 60 Hz, resistive or inductive load, for capacitive load current derate by 20 %.


Parameter	Symbols	Value	Units
Maximum Repetitive Peak Reverse Voltage	V_{RRM}	45	V
Maximum RMS voltage	V_{RMS}	31.5	V
Maximum DC Blocking Voltage	V _{DC}	45	V
Maximum Average Forward Rectified Current at T _a = 25°C	I _{F(AV)}	25	А
Peak Forward Surge Current 8.3 ms Single Half Sine Wave Superimposed on Rated Load (JEDEC Method)	I _{FSM}	350	А
Peak Forward Voltage ¹⁾ at I _F = 25 A	V _F	0.55	V
Maximum DC Reverse Current $T_a = 25^{\circ}$ C at Rated DC Blocking Voltage $T_a = 100^{\circ}$ C	I _R	0.05 20	mA
Typical Thermal Resistance ²⁾	$R_{ heta JC}$	2	°C/W
Operating Junction Themerature Range	T _{op}	- 40 to + 150	°C
Junction Temperature in DC Forward Current Without Reverse Bias.T≤ 1 hour ³⁾	TJ	- 40 to + 200	°C
Operating and Storage Temperature Range	T _{stg}	- 40 to + 175	°C

^{1) 300}us Pulse Width, 2%Duty Cycle.

²⁾ Thermal Resistance Junction to Case. Without Heatsink.

³⁾ Meets The Requiements Of IEC 61215 ed. 2 Bypass Diode Thermal Test.

FIG. 2 TYPICAL FORWARD CHARACTERISTICS

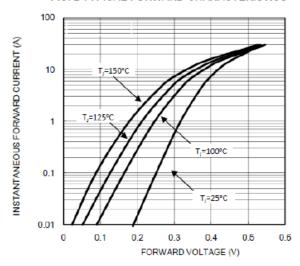


FIG. 3 TYPICAL REVERSE CHARACTERISTICS

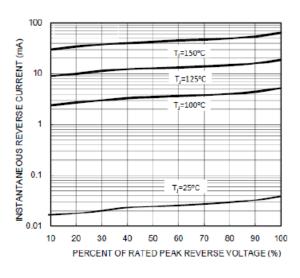


FIG. 4 MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT

