devicesYinc.

1509-xxz

1509J-xxz

dat

PACKAGES

TAP

c.....

.....

OUT

OUT TAP

1509

1509J

MECHANICALLY VARIABLE DELAY LINE (SERIES 1509 & 1509J)

FEATURES

- Ideal for "Set and Forget" applications .
- Multi-turn adjustment screw (1509: 20 turns, 1509J: 60 turns)
- Stackable for PC board economy .
- Fits standard 14-pin DIP socket (1509)
- 20mil x 10mil flat leads (1509) •
- #20 gauge leads (1509J) .
- **Resolution:** As low as 0.15ns
- **Dielectric breakdown:** 50 Vdc
- Temperature coefficient: 200 PPM/°C

FUNCTIONAL DESCRIPTION

The 1509- and 1509J-series devices are mechanically variable, passive delay lines. The signal input (IN) is reproduced at the tap output (TAP), shifted by an amount which can be adjusted between 0 and T_D , where T_D is the device dash number. The fixed output (OUT) reproduces the input, delayed by T_{D} , and must be terminated to match the characteristic impedance of the line, which is

PIN DESCRIPTIONS

 $xx = Max Delay (T_D)$

z = Impedance Code

IN Signal Input TAP Variable Output OUT **Fixed Output** GND Ground

(Ω)

0.4

1.0

1.0

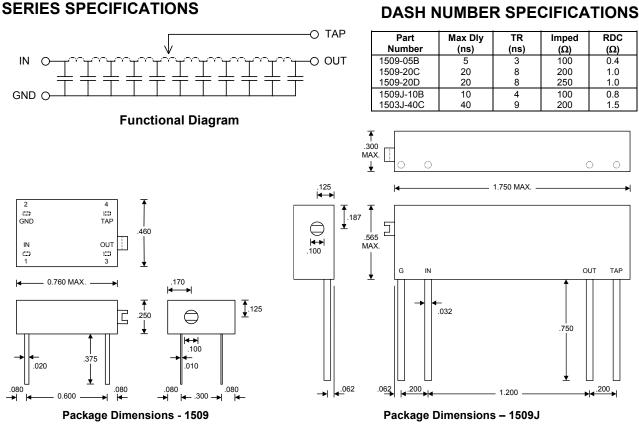
0.8

15

 \bigcirc

TAP

given by the letter code that follows the dash number (See Table). The tap output is unbuffered. The 3dB bandwidth of the line is given by 0.35 / T_R , where T_R is the rise time of the line (See Table).

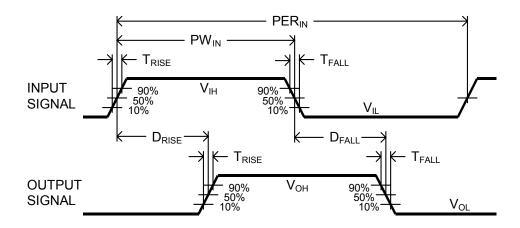

GND

C:::3

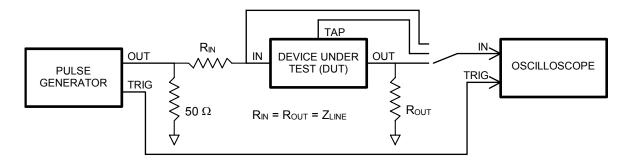
.....

IN

GND IN


©2004 Data Delay Devices

PASSIVE DELAY LINE TEST SPECIFICATIONS


TEST CONDITIONS

INPUT: Ambient Temperature: Input Pulse:	25°C ± 3°C High = 3.0V typical Low = 0.0V typical	OUTPUT: R _{load} : C _{load} : Threshold:	10MΩ 10pf 50% (Rising & Falling)
Source Impedance: Rise/Fall Time:	50Ω Max. 3.0 ns Max. (measured at 10% and 90% levels)		
Pulse Width $(T_D > 75ns)$:	PER _{IN} = 1000ns		

NOTE: The above conditions are for test only and do not in any way restrict the operation of the device.

Timing Diagram For Testing

Test Setup