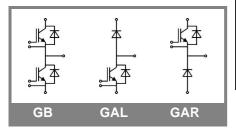


### **IGBT Modules**


SKM 200GB123D SKM 200GAL123D SKM 200GAR123D

#### **Features**

- MOS input (voltage controlled)
- N channel, homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I<sub>cnom</sub>
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distances (20 mm)

### **Typical Applications**

- AC inverter drives
- UPS



| Absolute Maximum Ratings T <sub>c</sub> = 25 °C, unless otherwise specified |                                                                 |                           |                  |       |  |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------|------------------|-------|--|
| Symbol                                                                      | Conditions                                                      |                           | Values           | Units |  |
| IGBT                                                                        |                                                                 |                           |                  |       |  |
| $V_{CES}$                                                                   | $T_{j} = 25 ^{\circ}\text{C}$<br>$T_{i} = 150 ^{\circ}\text{C}$ |                           | 1200             | V     |  |
| I <sub>C</sub>                                                              | T <sub>j</sub> = 150 °C                                         | T <sub>case</sub> = 25 °C | 200              | Α     |  |
|                                                                             |                                                                 | T <sub>case</sub> = 85 °C | 180              | Α     |  |
| I <sub>CRM</sub>                                                            | I <sub>CRM</sub> =2xI <sub>Cnom</sub>                           |                           | 300              | Α     |  |
| $V_{\rm GES}$                                                               |                                                                 |                           | ± 20             | V     |  |
| t <sub>psc</sub>                                                            | $V_{CC}$ = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V         | T <sub>j</sub> = 125 °C   | 10               | μs    |  |
| Inverse D                                                                   | iode                                                            |                           |                  | •     |  |
| I <sub>F</sub>                                                              | T <sub>j</sub> = 150 °C                                         | $T_{case}$ = 25 °C        | 200              | Α     |  |
|                                                                             |                                                                 | T <sub>case</sub> = 80 °C | 130              | Α     |  |
| $I_{FRM}$                                                                   | I <sub>FRM</sub> =2xI <sub>Fnom</sub>                           |                           | 300              | Α     |  |
| I <sub>FSM</sub>                                                            | t <sub>p</sub> = 10 ms; sin.                                    | T <sub>j</sub> = 150 °C   | 1440             | Α     |  |
| Freewhee                                                                    | eling Diode                                                     |                           |                  | •     |  |
| $I_{F}$                                                                     | T <sub>j</sub> = 150 °C                                         | $T_{case}$ = 25 °C        | 260              | Α     |  |
|                                                                             |                                                                 | T <sub>case</sub> = 80 °C | 180              | Α     |  |
| I <sub>FRM</sub>                                                            | I <sub>FRM</sub> =2xI <sub>Fnom</sub>                           |                           | 400              | Α     |  |
| I <sub>FSM</sub>                                                            | t <sub>p</sub> = 10 ms; sin.                                    | T <sub>j</sub> = 150 °C   | 1800             | Α     |  |
| Module                                                                      |                                                                 |                           |                  |       |  |
| $I_{t(RMS)}$                                                                |                                                                 |                           | 500              | Α     |  |
| T <sub>vj</sub>                                                             |                                                                 |                           | - 40 + 150 (125) | °C    |  |
| T <sub>stg</sub>                                                            |                                                                 |                           | - 40+ 125        | °C    |  |
| V <sub>isol</sub>                                                           | AC, 1 min.                                                      |                           | 2500             | V     |  |

| <b>Characteristics</b> $T_c = 25$ °C, unless otherwise specifie |                                                   |                                          |      |      |       | ecified |
|-----------------------------------------------------------------|---------------------------------------------------|------------------------------------------|------|------|-------|---------|
| Symbol                                                          | Conditions                                        |                                          | min. | typ. | max.  | Units   |
| IGBT                                                            |                                                   |                                          | •    |      |       | •       |
| $V_{GE(th)}$                                                    | $V_{GE} = V_{CE}$ , $I_C = 6 \text{ mA}$          |                                          | 4,5  | 5,5  | 6,5   | V       |
| I <sub>CES</sub>                                                | $V_{GE} = 0 V, V_{CE} = V_{CES}$                  | T <sub>j</sub> = 25 °C                   |      | 0,1  | 0,3   | mA      |
| $V_{CE0}$                                                       |                                                   | T <sub>i</sub> = 25 °C                   |      | 1,4  | 1,6   | V       |
|                                                                 |                                                   | T <sub>j</sub> = 125 °C                  |      | 1,6  | 1,8   | V       |
| r <sub>CE</sub>                                                 | V <sub>GE</sub> = 15 V                            | T <sub>i</sub> = 25°C                    |      | 7,33 | 9,33  | mΩ      |
|                                                                 |                                                   | $T_{j} = 125^{\circ}C$                   |      | 10   | 12,66 | mΩ      |
| V <sub>CE(sat)</sub>                                            | I <sub>Cnom</sub> = 150 A, V <sub>GE</sub> = 15 V | T <sub>j</sub> = °C <sub>chiplev</sub> . |      | 2,5  | 3     | V       |
| C <sub>ies</sub>                                                |                                                   |                                          |      | 10   | 13    | nF      |
| C <sub>oes</sub>                                                | $V_{CE}$ = 25, $V_{GE}$ = 0 $V$                   | f = 1 MHz                                |      | 1,5  | 2     | nF      |
| C <sub>res</sub>                                                |                                                   |                                          |      | 0,8  | 1,2   | nF      |
| $Q_G$                                                           | V <sub>GE</sub> = -8V - +20V                      |                                          |      | 1500 |       | nC      |
| R <sub>Gint</sub>                                               | T <sub>j</sub> = °C                               |                                          |      | 2,5  |       | Ω       |
| t <sub>d(on)</sub>                                              |                                                   |                                          |      | 220  | 400   | ns      |
| $t_r$                                                           | $R_{Gon}$ = 5,6 $\Omega$                          | $V_{CC} = 600V$                          |      | 100  | 200   | ns      |
| E <sub>on</sub>                                                 |                                                   | I <sub>C</sub> = 150A                    |      | 24   |       | mJ      |
| $t_{d(off)}$                                                    | $R_{Goff} = 5.6 \Omega$                           | T <sub>j</sub> = 125 °C                  |      | 600  | 800   | ns      |
| t <sub>f</sub>                                                  |                                                   | $V_{GE} = -15V$                          |      | 70   | 100   | ns      |
| $E_{off}$                                                       |                                                   |                                          |      | 17   |       | mJ      |
| R <sub>th(j-c)</sub>                                            | per IGBT                                          |                                          |      |      | 0,09  | K/W     |

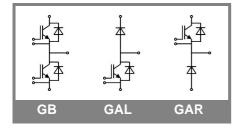


#### **IGBT** Modules

SKM 200GB123D SKM 200GAL123D SKM 200GAR123D

#### **Features**

- MOS input (voltage controlled)
- N channel, homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I<sub>cnom</sub>
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distances (20 mm)


#### **Typical Applications**

- AC inverter drives
- UPS

| Characte             | ristics                                         |                                                                   |      |      |       |       |
|----------------------|-------------------------------------------------|-------------------------------------------------------------------|------|------|-------|-------|
| Symbol               | Conditions                                      | l                                                                 | min. | typ. | max.  | Units |
| Inverse D            |                                                 | ·                                                                 |      |      |       | ·     |
| $V_F = V_{EC}$       | $I_{Fnom}$ = 150 A; $V_{GE}$ = 0 V              |                                                                   |      | 2    | 2,5   | V     |
|                      |                                                 | $T_j = 125  ^{\circ}C_{\text{chiplev.}}$                          |      | 1,8  |       | V     |
| $V_{F0}$             |                                                 | T <sub>j</sub> = 25 °C                                            |      | 1,1  | 1,2   | ٧     |
|                      |                                                 | T <sub>j</sub> = 125 °C                                           |      |      |       | V     |
| r <sub>F</sub>       |                                                 | T <sub>j</sub> = 25 °C                                            |      | 6    | 8,7   | mΩ    |
|                      |                                                 | T <sub>j</sub> = 125 °C                                           |      |      |       | mΩ    |
| I <sub>RRM</sub>     | I <sub>F</sub> = 150 A                          | T <sub>j</sub> = 125 °C                                           |      | 90   |       | Α     |
| $Q_{rr}$             | di/dt = 1500 A/μs                               |                                                                   |      | 8    |       | μC    |
| E <sub>rr</sub>      | $V_{GE} = -15 \text{ V}; V_{cc} = 600 \text{V}$ |                                                                   |      | 6,6  |       | mJ    |
| $R_{th(j-c)D}$       | per diode                                       |                                                                   |      |      | 0,25  | K/W   |
|                      | eling Diode                                     |                                                                   |      |      |       |       |
| $V_F = V_{EC}$       | $I_{Fnom}$ = 200 A; $V_{GE}$ = 0 V              |                                                                   |      | 2    | 2,5   | V     |
|                      |                                                 | $T_j = 125  ^{\circ}C_{\text{chiplev.}}$<br>$T_j = 25  ^{\circ}C$ |      | 1,8  |       | V     |
| $V_{F0}$             |                                                 |                                                                   |      | 1,1  | 1,2   | V     |
|                      |                                                 | T <sub>j</sub> = 125 °C                                           |      |      |       | V     |
| r <sub>F</sub>       |                                                 | T <sub>j</sub> = 25 °C                                            |      | 4,5  | 6,5   | V     |
|                      |                                                 | T <sub>j</sub> = 125 °C                                           |      |      |       | V     |
| I <sub>RRM</sub>     | I <sub>F</sub> = 200 A                          | T <sub>j</sub> = 125 °C                                           |      | 120  |       | Α     |
| Q <sub>rr</sub>      | di/dt = 2000 A/μs                               |                                                                   |      | 11   |       | μC    |
| E <sub>rr</sub>      | $V_{GE} = 0 \text{ V}; V_{CC} = 600 \text{ V}$  |                                                                   |      |      |       | mJ    |
| $R_{th(j-c)FD}$      | per diode                                       |                                                                   |      |      | 0,18  | K/W   |
| Module               |                                                 |                                                                   |      |      |       | _     |
| L <sub>CE</sub>      |                                                 |                                                                   |      | 15   | 20    | nH    |
| R <sub>CC'+EE'</sub> | res., terminal-chip                             | T <sub>case</sub> = 25 °C                                         |      | 0,35 |       | mΩ    |
|                      |                                                 | T <sub>case</sub> = 125 °C                                        |      | 0,5  |       | mΩ    |
| R <sub>th(c-s)</sub> | per module                                      |                                                                   |      |      | 0,038 | K/W   |
| M <sub>s</sub>       | to heat sink M6                                 |                                                                   | 3    |      | 5     | Nm    |
| M <sub>t</sub>       | to terminals M6, M4                             |                                                                   | 2,5  |      | 5     | Nm    |
| w                    |                                                 |                                                                   |      |      | 325   | g     |

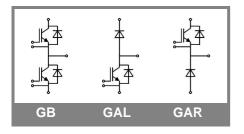
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

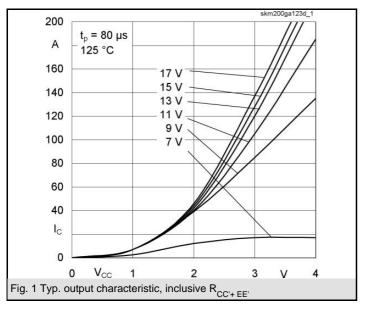


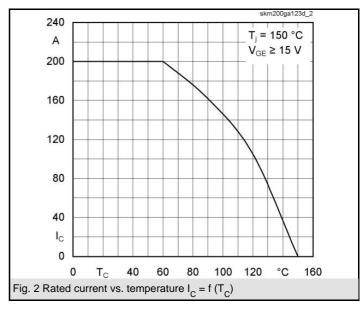


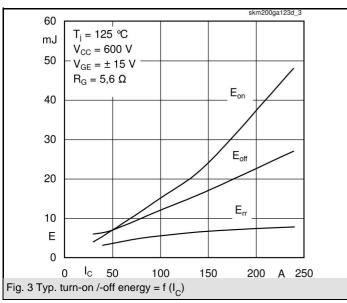
### **IGBT** Modules

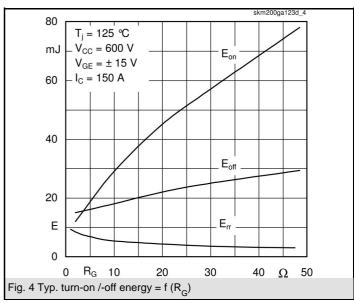

SKM 200GB123D SKM 200GAL123D SKM 200GAR123D

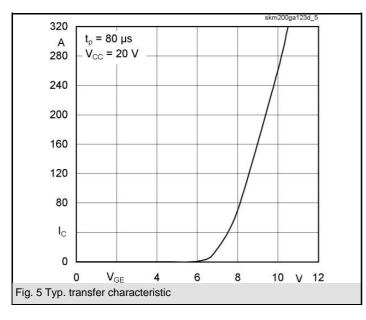
| F | eati | ure | S |
|---|------|-----|---|
|---|------|-----|---|


- MOS input (voltage controlled)
- N channel, homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I<sub>cnom</sub>
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distances (20 mm)


### **Typical Applications**


- AC inverter drives
- UPS





| Z <sub>th</sub><br>Symbol        | Conditions | Values | Units |
|----------------------------------|------------|--------|-------|
| Z <sub>th/i a</sub>              |            |        | ·     |
| Z<br><sub>Ri</sub>               | i = 1      | 59     | mk/W  |
| Ri                               | i = 2      | 23     | mk/W  |
| R <sub>i</sub><br>R <sub>i</sub> | i = 3      | 6,8    | mk/W  |
| R <sub>i</sub>                   | i = 4      | 1,2    | mk/W  |
| tau <sub>i</sub>                 | i = 1      | 0,03   | s     |
| tau <sub>i</sub>                 | i = 2      | 0,0087 | s     |
| tau <sub>i</sub>                 | i = 3      | 0,002  | s     |
| tau <sub>i</sub>                 | i = 4      | 0,0002 | s     |
| Z<br>R <sub>i</sub> th(j-c)D     |            |        |       |
| R <sub>i</sub>                   | i = 1      | 170    | mk/W  |
| $R_i$                            | i = 2      | 66     | mk/W  |
| $R_i$                            | i = 3      | 12     | mk/W  |
| $R_i$                            | i = 4      | 2      | mk/W  |
| tau <sub>i</sub>                 | i = 1      | 0,0348 | s     |
| tau <sub>i</sub>                 | i = 2      | 0,0072 | s     |
| tau <sub>i</sub>                 | i = 3      | 0,077  | s     |
| tau <sub>i</sub>                 | i = 4      | 0,0002 | s     |

