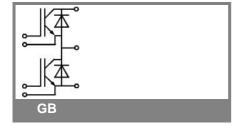
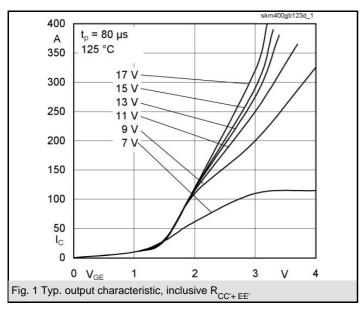


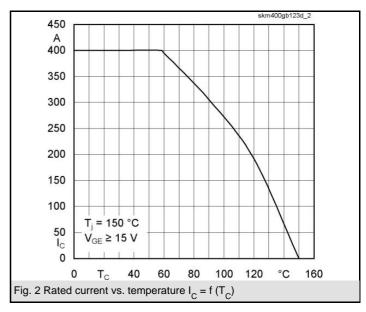
IGBT Modules

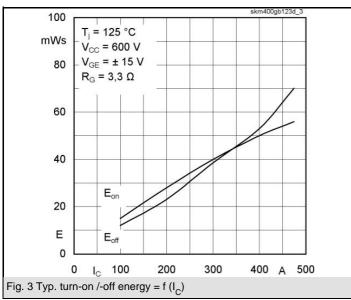
SKM 400GB123D

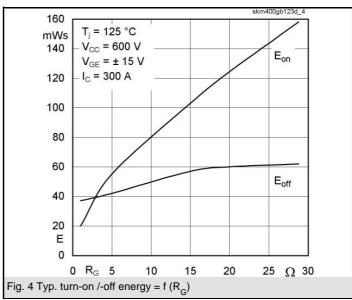
Features

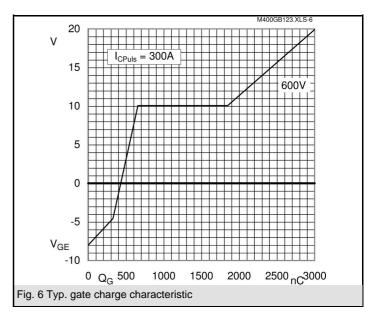

- MOS input (voltage controlled)
- N channel, homgeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- . Fast & soft CAL diodes
- Isolated copper baseplate using DBC Direct Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

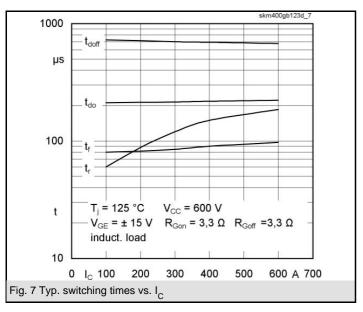

Typical Applications

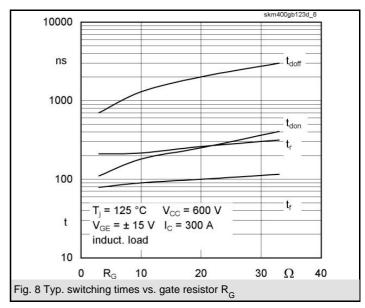

• Switching (not for linear use)

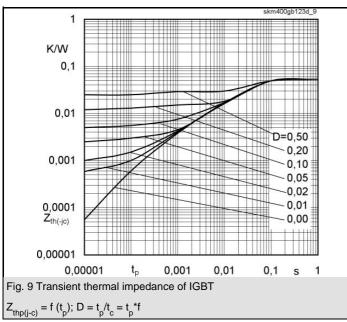

Absolute	Maximum Ratings	T _c = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1200	V					
V _{CES} I _C	T _c = 25 (80) °C	400 (330)	Α					
I _{CRM}	$t_p = 1 \text{ ms}$	600	Α					
V_{GES}	·	± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V _{isol}	AC, 1 min.	2500	V					
Inverse diode								
I _F	T _c = 25 (80) °C	390 (260)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	600	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	2900	Α					


Character					T _c = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units			
IGBT			71					
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_{C} = 12 \text{ mA}$	4,5	5,5	6,5	V			
I _{CES}	$V_{GE} = 0$, $V_{CE} = V_{CES}$, $T_i = 25 (125) °C$		0,1	0,3	mA			
V _{CE(TO)}	T _i = 25 (125) °C		1,4 (1,6)	1,6 (1,8)	V			
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		3,66 (5)	4,66 (6,33)	mΩ			
V _{CE(sat)}	$I_{Cnom} = 300 \text{ A}, V_{GE} = 15 \text{ V}, \text{ chip level}$		2,5 (3,1)	3 (3,7)	V			
C _{ies}	under following conditions		22	30	nF			
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		3,3	4	nF			
C _{res}			1,2	1,6	nF			
L _{CE}				20	nH			
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		$m\Omega$			
t _{d(on)}	V _{CC} = 600 V, I _{Cnom} = 300 A		200	400	ns			
t _r	$R_{Gon} = R_{Goff} = 3.3 \Omega, T_j = 125 °C$		115	220	ns			
$t_{d(off)}$	V _{GE} = ± 15 V		720	900	ns			
t _f			80	100	ns			
$E_{on} (E_{off})$			38 (40)		mJ			
Inverse diode								
$V_F = V_{EC}$	$I_{Fnom} = 300 \text{ A}; V_{GE} = 0 \text{ V}; T_j = 25 (125)$ $^{\circ}\text{C}$		2 (1,8)	2,5	V			
$V_{(TO)}$	T _i = 125 () °C			1,2	V			
r _T	T _j = 125 () °C		2,5	3,5	mΩ			
I _{RRM}	I _{Fnom} = 300 A; T _j = 25 (125) °C		85 (140)		Α			
Q_{rr}	di/dt = 2000 A/µs		13 (40)		μC			
E _{rr}	V _{GE} = V				mJ			
Thermal characteristics								
$R_{th(j-c)}$	per IGBT			0,05	K/W			
R _{th(j-c)D}	per Inverse Diode			0,125	K/W			
R _{th(c-s)}	per module			0,038	K/W			
	Mechanical data							
M_s	to heatsink M6	3		5	Nm			
M _t	to terminals M6				Nm			
w				325	g			

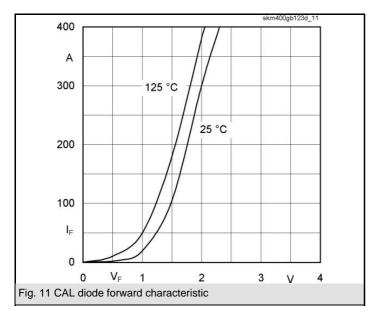


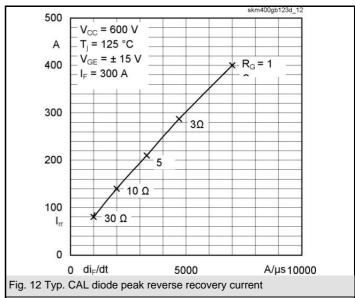


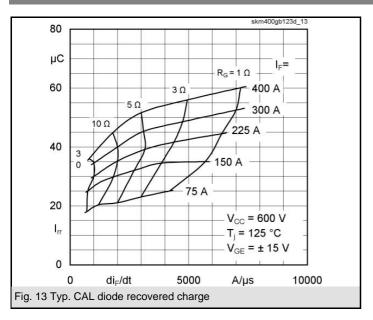


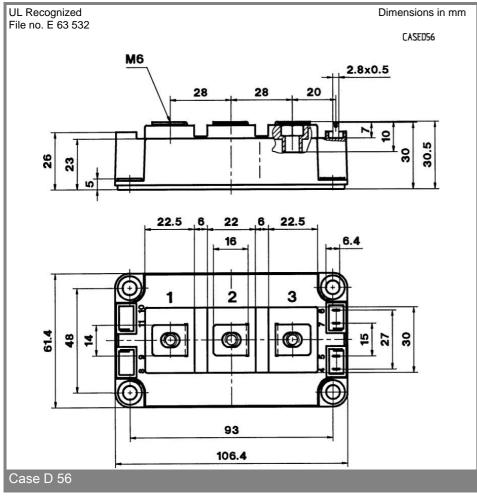














This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.