

Trench IGBT Module

SKM 400GB126D

SKM 400GAL126D

Features

- Homogeneous Si
- Trench = Trenchgate technology
- $\mathrm{V}_{\text {CEsat }}$ with positive temperature coefficient
- High short circuit capability, self limiting to $6 \times I_{C}$

Typical Applications*

- AC inverter drives
- UPS
- Electronic welders

> GAL

 GAL

 GAL}

Trench IGBT Module

SKM 400GB126D

SKM 400GAL126D

Features

- Homogeneous Si
- Trench = Trenchgate technology
- $\mathrm{V}_{\text {CEsat }}$ with positive temperature coefficient
- High short circuit capability, self limiting to $6 \times I_{C}$

Typical Applications*

- AC inverter drives
- UPS
- Electronic welders

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

Trench IGBT Module

SKM 400GB126D
SKM 400GAL126D

Features

- Homogeneous Si
- Trench = Trenchgate technology
- $\mathrm{V}_{\text {CEsat }}$ with positive temperature coefficient
- High short circuit capability, self limiting to $6 \times I_{C}$

Typical Applications*

- AC inverter drives
- UPS
- Electronic welders

$\begin{aligned} & Z_{\text {th }} \\ & \text { Symbol } \end{aligned}$	Conditions	Values	Units
	$\mathrm{i}=1$	55	mk/W
R_{i}	$\mathrm{i}=2$	21	mk/W
R_{i}	$\mathrm{i}=3$	3,6	mk/W
R_{i}	$\mathrm{i}=4$	0,4	mk/W
tau ${ }_{\text {i }}$	$\mathrm{i}=1$	0,0393	s
tau ${ }_{\text {i }}$	$\mathrm{i}=2$	0,0171	s
tau ${ }_{\text {i }}$	$\mathrm{i}=3$	0,002	s
tau ${ }_{\text {i }}$	$\mathrm{i}=4$	0,0002	s
$\mathrm{Z}_{\text {th(i-c) }}$			
	$\mathrm{i}=1$	120	mk/W
R_{i}	$\mathrm{i}=2$	48	mk/W
R_{i}	$\mathrm{i}=3$	10	mk/W
R_{i}	$\mathrm{i}=4$	2	mk/W
tau_{i}	$\mathrm{i}=1$	0,0262	s
tau ${ }_{\text {i }}$	$\mathrm{i}=2$	0,0417	s
tau ${ }_{\text {i }}$	$\mathrm{i}=3$	0,0012	s
tau ${ }_{i}$	$\mathrm{i}=4$	0,001	s

Fig. 3 Typ. turn-on /-off energy $=f\left(I_{C}\right)$

Fig. 2 Rated current vs. temperature $I_{C}=f\left(T_{C}\right)$

Fig. 9 Transient thermal impedance

Fig. 11 Typ. CAL diode peak reverse recovery current

Fig. 8 Typ. switching times vs. gate resistor R_{G}

Case D 56

