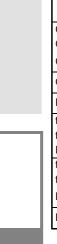


SEMITRANS[®] 3

Trench IGBT Module

SKM 400GB126D SKM 400GAL126D


Features

- · Homogeneous Si
- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

GAL

Typical Applications*

- AC inverter drives
- UPS
- Electronic welders

Absolute	Maximum Ratings	T _c =	25 °C, unless otherwise	specified
Symbol	Conditions		Values	Units
IGBT				
V_{CES}	$T_j = 25 ^{\circ}\text{C}$ $T_i = 150 ^{\circ}\text{C}$		1200	V
I _C	T _j = 150 °C	T _{case} = 25 °C	470	Α
		T _{case} = 80 °C	330	Α
I _{CRM}	I _{CRM} =2xI _{Cnom}		600	А
V _{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs
Inverse I	Diode			
I_{F}	T _j = 150 °C	T_{case} = 25 °C	400	Α
		T _{case} = 80 °C	270	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		600	Α
I _{FSM}	$t_p = 10 \text{ ms; sin.}$	T _j = 150 °C	2200	А
Freewhe	eling Diode			
I _F	T _j = 150 °C	T _{case} = 25 °C	400	Α
		T _{case} = 80 °C	270	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		600	А
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	2200	А
Module	•			
$I_{t(RMS)}$			500	Α
T _{vj}			- 40+ 150	°C
T _{stg}			- 40+ 125	°C
V _{isol}	AC, 1 min.		4000	V

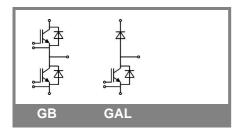
Characteristics T _c =		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 12 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,15	0,45	mA
V_{CE0}		T _j = 25 °C		1	1,2	V
		T _j = 125 °C		0,9		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		2,3	3,2	mΩ
		T _j = 125°C		3,7		$m\Omega$
V _{CE(sat)}	I _{Cnom} = 300 A, V _{GE} = 15 V			1,7	2,15	V
		$T_j = 125^{\circ}C_{chiplev}$		2		V
C _{ies}				23,1		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		1,9		nF
C _{res}				1,2		nF
Q_G	V _{GE} = -8V +20V			2800		nC
R _{Gint}	T _j = °C			2,5		Ω
t _{d(on)}				330		ns
t _r	$R_{Gon} = 2 \Omega$	$V_{CC} = 600V$		50		ns
E _{on}		I _C = 300A		29		mJ
t _{d(off)}	$R_{Goff} = 2 \Omega$	T _j = 125 °C		650		ns
t _f		V _{GE} = ±15V		110		ns
E _{off}				48		mJ
R _{th(j-c)}	per IGBT				0,08	K/W

Trench IGBT Module

SKM 400GB126D SKM 400GAL126D

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c


Typical Applications*

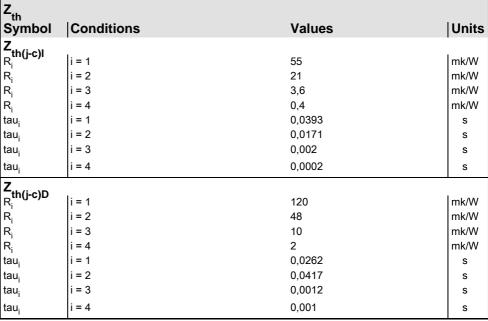
- AC inverter drives
- UPS
- Electronic welders

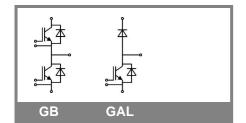
Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D	iode					
$V_F = V_{EC}$	$I_{Fnom} = 300 \text{ A}; V_{GE} = 0 \text{ V}$	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,6	1,8	V
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,6	1,8	V
V_{F0}		T _j = 25 °C		1	1,1	V
		T _j = 125 °C		0,8	0,9	V
r _F		T _j = 25 °C		2	2,3	mΩ
		T _j = 125 °C		2,7	3	mΩ
I _{RRM}	I _F = 300 A	T _j = 125 °C		390		Α
Q_{rr}	di/dt = 6300 A/µs	•		77		μC
E _{rr}	$V_{GE} = -15 \text{ V}; V_{CC} = 600 \text{ V}$			27		mJ
$R_{th(j-c)D}$	per diode				0,18	K/W
	ling Diode					
$V_F = V_{EC}$	I _{Fnom} = 300 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,6	1,8	V
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,6	1,8	V
V_{F0}		$T_j = 125 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_j = 25 ^{\circ}\text{C}$		1	1,1	V
		T _j = 125 °C		0,8	0,9	V
r _F		T _j = 25 °C		2	2,3	V
		T _j = 125 °C		2,7	3	V
I _{RRM}	I _F = 300 A	T _j = 125 °C		390		Α
Q_{rr}	di/dt = 6300 A/μs			77		μC
E _{rr}	$V_{GE} = -15 \text{ V}; V_{CC} = 600 \text{ V}$			27		mJ
R _{th(j-c)D}	per diode				0,18	K/W
Module						
L _{CE}				15	20	nΗ
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ
		T _{case} = 125 °C		0,5		mΩ
R _{th(c-s)}	per module				0,038	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M6		2,5		5	Nm
w					325	g

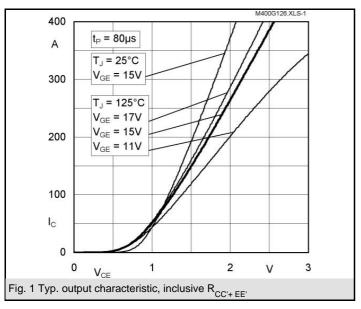
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

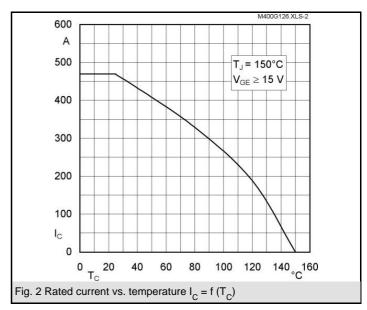
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

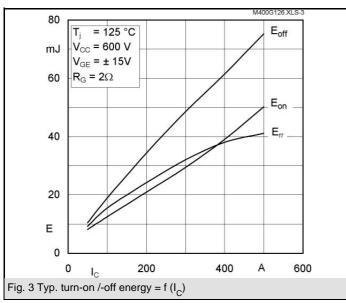
Trench IGBT Module

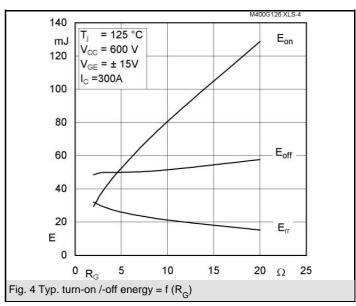

SKM 400GB126D SKM 400GAL126D

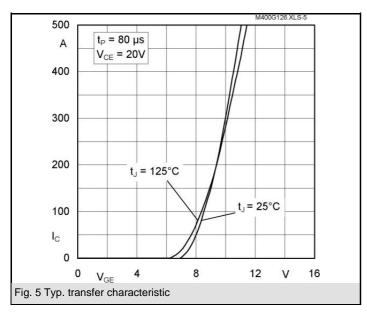

Feat	ures
-------------	------

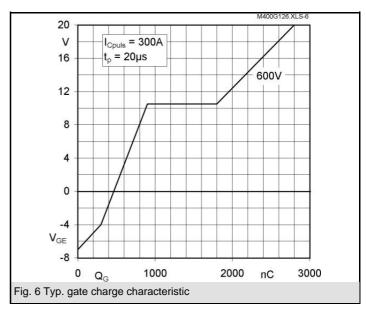

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

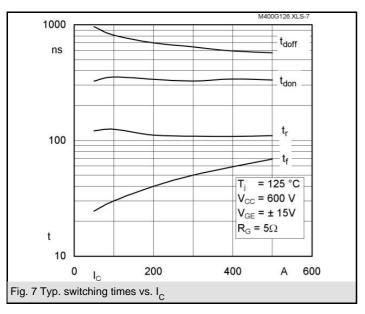

Typical Applications*

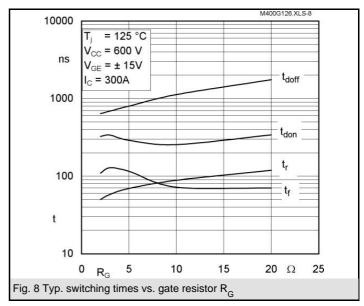

- AC inverter drives
- UPS
- Electronic welders

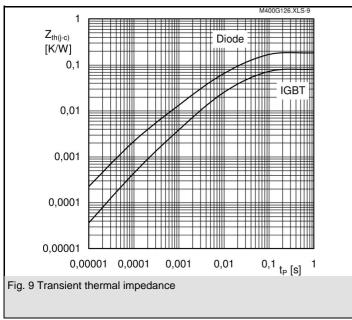


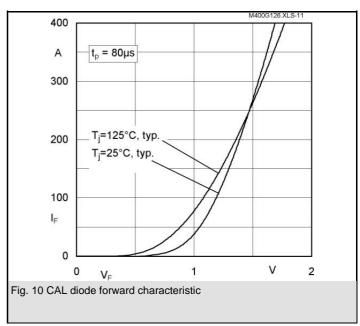


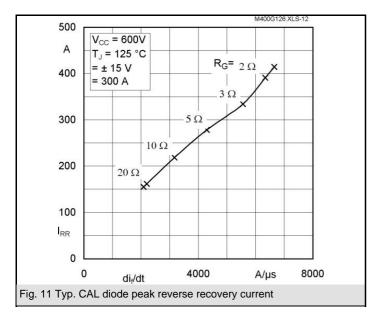


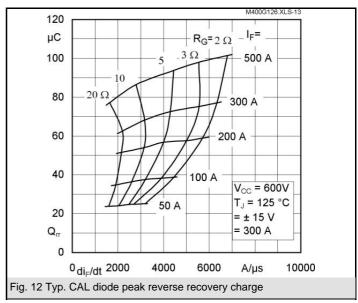


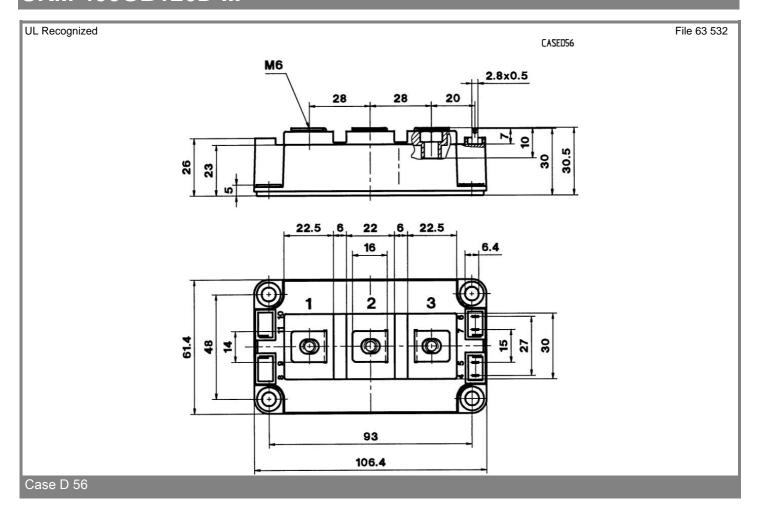


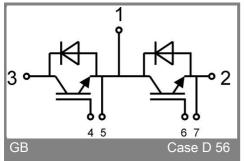


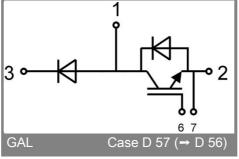












6 06-10-2009 NOS © by SEMIKRON