ab: 835-12 rev:B3 Number: AiP485A-AX-TX-B008EN

AiP485A Low-Power 10Mbps Full Fail-Safe RS-485 Transceiver

Product Specification

Specification Revision History:

Version	Date	Description
2021-05-A1	2021-05	New

Tab: 835-12 rev:B3 Number: AiP485A-AX-TX-B008EN

1. General Description

The AiP485A is 3V~5.5V powered transceiver that meets the RS-485 standards for balanced communication. It features the larger output voltage and higher data rate up to 10Mbps required by high speed PROFIBUS applications.

This transceiver delivers at least a 2.1V differential output voltage on 5V supply condition, into the RS-485 required 54Ω load, for better noise immunity, or to allow up to three 120Ω terminations in "star" topologies, at the exceptional 10Mbps data rate. This device has very low bus currents so that presents a true "1/8 unit load" to the RS-485 bus. This allows up to 256 transceivers on the network without using repeaters.

Receiver (Rx) inputs feature a "Full Fail-Safe" design, which ensures a logic high Rx output if Rx inputs are floating, shorted, or on a terminated but undriven bus.

Features:

- Wide supply voltage 3V to 5.5V
- Hot plug circuitry-Tx and Rx outputs remain three-state during power-up/power-down
- High Data Rate: 10Mbps At 5V Supply
- Full fail-safe (open, short, terminated) receivers
- Up to 256 nodes on a bus (1/8 unit load)
- Bus-Pin Protection: ±15kV HBM protection
- Specified from -40° C to $+85^{\circ}$ C
- Packaging information: SOP8/MSOP8/DFN8

Address:Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province
http://www.i-core.cn
P.C.: 214072
VER: 2021-05-A1

Number: AiP485A-AX-TX-B008EN

Ordering Information:

Tube packing specifications:

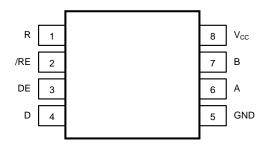
Part number	Packaging form	Marking code	Tube quantity	Boxed tube quantity	Boxed quantity	Notes
AiP485ASA8.TB	SOP8	AiP485A	100 PCS/tube	100 tube/box	10000 PCS/box	Dimensions of plastic enclosure: 4.9mm×3.9mm Pin spacing: 1.27mm
AiP485AMA8.TB	MSOP8	AiP485A	100 PCS/tube	120 tube/box	12000 PCS/box	Dimensions of plastic enclosure: 3.0mm×3.0mm Pin spacing: 0.65mm
AiP485AXA8.TB	DFN8	AiP485A	490 PCS/plate	10 plate/box	4900 PCS/box	Dimensions of plastic enclosure: 3.0mm×3.0mm Pin spacing: 0.65mm

Reel packing specifications:

Part number	Packaging form	Marking code	Reel quantity	Boxed reel quantity	Notes
AiP485ASA8.TR	SOP8	AiP485A	4000PCS/reel	8000PCS/box	Dimensions of plastic enclosure: 4.9mm×3.9mm Pin spacing:1.27mm
AiP485AMA8.TR	MSOP8	AiP485A	5000PCS/reel	10000PCS/box	Dimensions of plastic enclosure: 3.0mm×3.0mm Pin spacing:0.65mm

Note: If the physical information is inconsistent with the ordering information, please refer to the actual product.

Address:Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province 3/17 http://www.i-core. cn P.C.: 214072 VER: 2021-05-A1



Wuxi I-CORE Electronics Co., Ltd. Tab: 835-12 rev:B3 Number: AiPAS

Number: AiP485A-AX-TX-B008EN

2. Block Diagram And Pin Description

2.1. Pin Configurations

2.2. Pin Description

Pin No.	Pin Name	Pin Name I/O Description	
1	R	digital output	receiver output
2	/RE	digital input	receiver output enable
3	DE	digital input	driver output enable
4	D	D digital input driver input	
5	GND	ground	ground
6	A	bus input/output	noninverting receiver input A and noninverting driver output A
7	В	bus input/output	inverting receiver input A and inverting driver output A
8	V_{CC}	power	power supply

2.3, Function Table

2.3.1, Driver Function Table

Input	Enable	Out	puts	Degamination					
D	DE	A B		Description					
Normal Mode									
Н	Н	Н	L	actively drives bus High					
L	Н	L	Н	actively drives bus Low					
X	L	Z	Z	driver disabled					
X	open	Z	Z	driver disabled by default					
open	Н	Н	L	actively drives bus High by default					

2.3.2 Receiver Function Table

Differential Input	Enable	Outputs	Degamination
V _{ID} =VA-VB	/RE R		Description
$V_{IT+} < V_{ID}$	L	Н	receive valid bus High
$V_{IT} < V_{ID} < V_{IT+}$	L	-	indeterminate bus state
$V_{ID} < V_{IT}$	L	L	receive valid bus Low
X	Н	Z	receiver disabled
X	open	Z	receiver disabled by default
open, short, idle bus	L	Н	fail-safe high output

Wuxi I-CORE Electronics Co., Ltd. ab: 835-12 rev:B3 Number: AiP48

Tab: 835-12 Number: AiP485A-AX-TX-B008EN

3. Electrical Parameter

3.1. Absolute Maximum Ratings

 $(T_{amb}=25\,^{\circ}\text{C}, \text{ all voltage referenced to GND, unless otherwise specified})$

Characteristic	Symbol	Conditions	Value	Unit
supply voltage	V_{CC}	-	-0.3 to +7	V
input voltage	V_{I}	D, DE, /RE	-0.3 to V _{CC} +0.3	V
		A, B	-15 to +15	V
Input/output voltage	$V_{\rm I/O}$	A, B (transient pulse through 100Ω)	±100	V
		R	-0.3 to V _{CC} +0.3	V
short circuit duration	-	A, B	continuous	-

3.2, Recommended Operating Conditions

Characteristic	Symbol	Conditions	Value	Unit
supply voltage	V_{CC}	-	3 to 5.5	V
bus pin common mode voltage	V_{CM}	-	-7 to 12	V
High-level input voltage	V_{IH}	driver, driver enable, and receiver enable inputs	2 to V _{CC}	V
Low-level input voltage	V_{IL}	driver, driver enable, and receiver enable inputs	0 to 0.8	V
differential input voltage	V_{ID}	-	-7 to 12	V
differential load resistance	R_{L}	-	>54	Ω
operating temperature	T_{amb}	-	-40 to 85	$^{\circ}$
storage temperature	T_{stg}	-	-65 to 150	$^{\circ}$

3.3 ESD Rating

HBM Model	Value	Unit
bus pins(A,B)	±15	kV
all other pins	±15	kV

Address:Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province 5/17 http://www.i-core. cn VER: 2021-05-A1 P.C.: 214072

Number: AiP485A-AX-TX-B008EN

3.4, Electrical Characteristics

3.4.1, DC Characteristics

(T_{amb} =-40 to 85°C, V_{CC} =5V, unless otherwise specified)

Parameter	Symbol	Cond	itions		Min.	Тур.	Max.	Unit
driver differential-output		R_L =60 Ω @VA&VB(- V _{CC} =4.5 to 5.5		Earma 1D	2.1	3.5	-	V
		R_L =60 Ω @VA&VB(-7~12V) V_{CC} =3.0 to 3.6V		1.5	2.2	-	V	
voltage magnitude	$ V_{\mathrm{OD}} $	$R_L=54\Omega, V_{CC}=5$	5V		2	3.6	-	V
5 6		$R_L=54\Omega, V_{CC}=3$	3V	T: 1 A	1.5	1.9	-	V
		$R_L=100\Omega, V_{CC}=$	5V	Figure 1A	2.7	4.0	-	V
		$R_L=100\Omega, V_{CC}=$	3V	2V) Figure 1B 2.1 3.5 - 1.5 2.2 - 1.5 1.9 - 2 7 4.0 - 2 2.3 - OpF Figure 1A -50 2 50 1 Vcc/2 3 Sistors Figure 1A - 50 - - 500 - - 8 - 7~12V12040	-	V		
change in magnitude of driver differential-output voltage	$\Delta V_{OD} $	R_L =54 Ω , V_{CC} =5 V , C_L =50pF Figure 1A		-50	2	50	mV	
steady-stage common-mode output voltage	$V_{\text{OC(SS)}}$				1	V _{CC} /2	3	V
change in differential driver common-mode output voltage	ΔV_{OC}	center of two 27Ω load	l resistors	Figure 1A	-	50	-	mV
peak-to-peak driver common-mode output voltage	$V_{\text{OC(PP)}}$				-	500	1	mV
differential output capacitance	C_{OD}		-		-	8	-	pF
positive-going receiver differential-input voltage threshold	V _{IT+}	VA/VB: from -7~12V		-	-120	-40	mV	
negative-going receiver differential-input voltage threshold	V _{IT-}	VA/VB: fro	om -7~12V		-220	-170	-	mV
receiver differential-input voltage threshold hysteresis (V _{IT+} -V _{IT-})	V _{HYS}		-		-	50	-	mV
logic Input High Voltage	V_{IH}	DI, DI	E, /RE		2	-	1	V
logic Input Low Voltage	V_{IL}	DI, DI	E, /RE		-	-	0.8	V
receiver high-level output voltage	V_{OH}	I _{OH} =-	-8mA		3	4.6	ı	V
receiver low-level output voltage	V_{OL}	I _{OL} =	8mA		-	1	0.4	V
driver input, driver enable	I_i	DI, DE, /RE		-5	-	5	uA	
receiver high-Z output current	I_{OZ}	$V_0=0/V_{CC}$, $/RE=V_{CC}$		-1	-	1	uA	
driver short-circuit output	T	I _{OS} with VA/VE	3 from -7 to	12V	-250	110	250	mA
current	$ I_{OS} $	bus pin A,B	short currer	nt	-	-	150	mA
bus input current(driver	I_{IN}	V_{CC} =4.5 to 5.5 or		=12V	-	-	120	uA
disabled)	*IIN	$V_{CC}=0$, DE at $0V$	V_{I} =	=-7V	-110	-	-	uA

Address:Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province 6/ 17 http://www.i-core. cn P.C.: 214072 VER: 2021-05-A1

Wuxi I-CORE Electronics Co., Ltd. Tab: 835-12 rev:B3 Number: AiP48

Number: AiP485A-AX-TX-B008EN

bus input impedance	R_A/R_B	VA=-7V, VB=12V and VA=12V, VB=-7V			-	-	ΚΩ
supply current (quiescent)	I_{CC}	TX \cdot RX enable $DE=V_{CC}$, /RE=GND, no load;		-	1.9	2.2	
		TX enable, RX disable DE=V _{CC} , /RE=no load;		-	0.47	0.6	A
		TX disable, RX enable	DE=GND, /RE=GND, no load;	-	1.7	2.0	mA
		TX disable, RX disable	DE=GND, /RE=V _{CC} , no load;	-	-	< 0.001	

3.4.2, AC Characteristics

Parameter	Symbol	Condition	ns	Min.	Typ.	Max.	Unit		
Driver									
maximum data rate	f_{MAX}	V _{OD} ≥±1.5V, R _L =54Ω (Figure 4		-	-	10	Mbps		
driver differential-output rise and fall times	t_r, t_f	P -540 C -50pE	Figure 2	-	5	_	ns		
driver propagation delay	t_{PHL}, t_{PLH}	$R_L=54\Omega$, $C_L=50pF$	Figure 2	-	15	30	ns		
t _{PHL} - t _{PLH}	$t_{SK(P)}$			-	-	20	ns		
driver disable time	t_{PHZ}	$C_L=15pF$		-	17	50	ns		
direct disable time	t_{PLZ}	CL=13pr		_	20	50	ns		
	t	RX enable	Figure 3	-	36	45	ns		
driver enable time	t_{PZH}	RX disable	Figure 3	-	2400	3200	ns		
driver enable time	t	RX enable		-	21	45	ns		
	$t_{ m PZL}$	RX disable		-	2400	3200	ns		
		Receive	r						
receiver output rise and fall times	t_r, t_f			-	9	-	ns		
receiver propagation delay time	t_{PHL} , t_{PLH}	C _L =15pF	Figure 5	-	28	50	ns		
receiver pulse skew, t _{PHL} -t _{PLH}	$t_{SK(P)}$			-	-	15	ns		
	t_{PHZ}			-	30	60			
receiver disable time	t_{PLZ}	-		-	27	60	ns		
		TX enab	le	-	67	-	ns		
	t_{PZH}	TX disab	le	-	2500	3200	ns		
receiver enable time		TX enab	le	-	24	35	ns		
	t_{PZL}	TX disab	le	-	2400	3200	ns		

Tab: 835-12 rev:B3 Number: AiP485A-AX-TX-B008EN

4. Testing Circuit

4.1. DC Testing Circuit

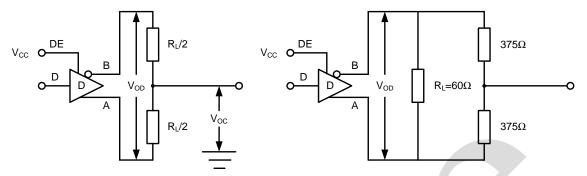


Figure 1A. V_{OD} and V_{OC}

Figure 1B. V_{OD} with common mode load

Figure 1. DC driver test circuits

4.2. AC Testing Circuit

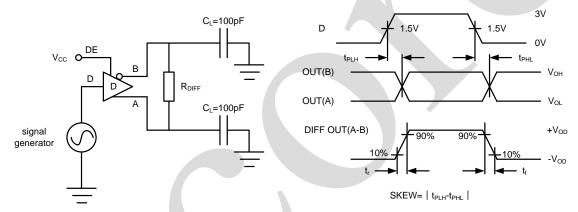
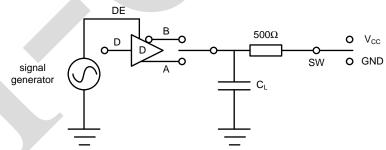



Figure 2A. test circuit

Figure 2B. measurement points

Figure 2. driver propagation delay and differential transition times

Parameter	Output	/RE	D	SW	C _L (pF)
$t_{ m PHZ}$	A/B	X	1/0	GND	15
$t_{\rm PLZ}$	A/B	X	0/1	V_{CC}	15
t_{PZH}	A/B	0	1/0	GND	100
t_{PZL}	A/B	0	0/1	V_{CC}	100
t _{PZH(SHDN)}	A/B	1	1/0	GND	100
t _{PZL(SHDN)}	A/B	1	0/1	V_{CC}	100

Figure 3A. test circuit

Tab: 835-12 rev:B3 Number: AiP485A-AX-TX-B008EN

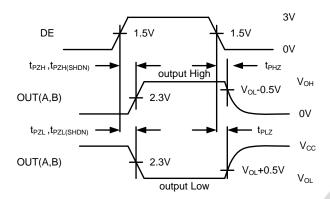


Figure 3B. measurement points
Figure 3. driver enable and disable times

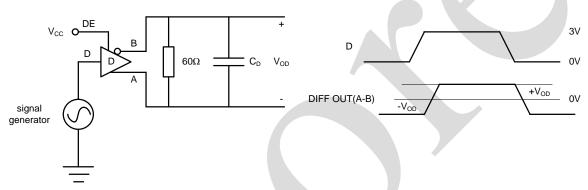


Figure 4A. test circuit

Figure 4B. measurement points

Figure 4. driver data rate

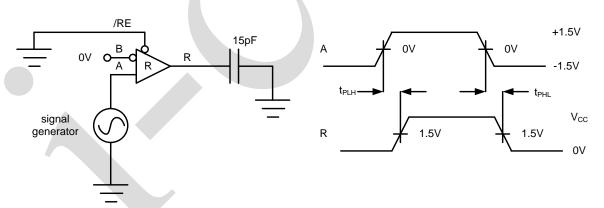


Figure 5A. test circuit

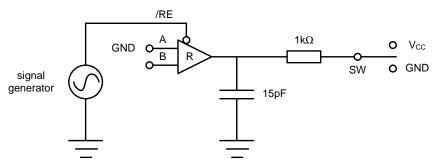

Figure 5B. measurement points

Figure 5. receiver propagation delay and data rate

Wuxi I-CORE Electronics Co., Ltd. ab: 835-12 rev:B3 Number: AiP48

Tab: 835-12 Number: AiP485A-AX-TX-B008EN

Parameter	DE	A	SW
t_{PHZ}	1	+1.5V	GND
t_{PLZ}	1	-1.5V	V _{CC}
t_{PZH}	1	+1.5V	GND
t_{PZL}	1	-1.5V	V_{CC}
t _{PZH(SHDN)}	0	+1.5V	GND
t _{PZL(SHDN)}	0	-1.5V	V_{CC}

Figure 6A. test circuit

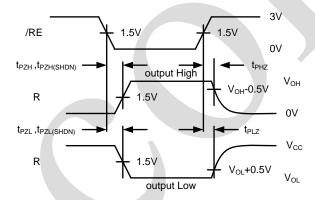


Figure 6B. measurement points Figure 6. receiver enable and disable times

Address: Building B4,NO.777, Jianzhu Road, Binhu District, Wuxi City, Jiangsu Province http://www.i-core. cn P.C.: 214072 VER: 2021-05-A1

10/17

Tab: 835-12 Number: AiP485A-AX-TX-B008EN

5. Characteristic Curve

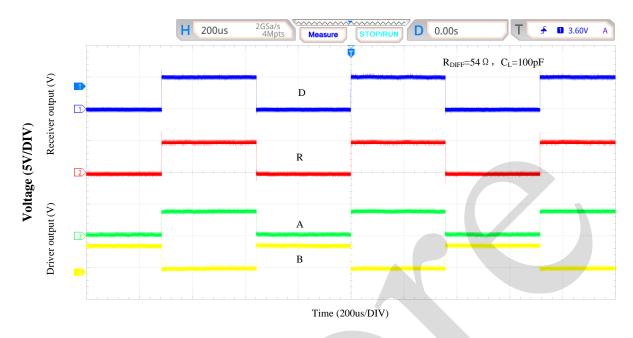


Figure 7. driver and receiver waveforms

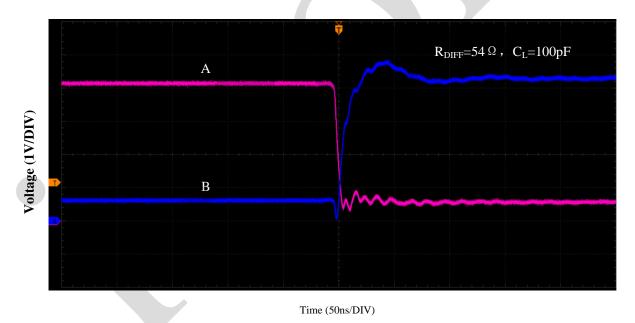


Figure 8. driver waveforms

Tab: 835-12 rev:B3 Number: AiP485A-AX-TX-B008EN

6. Function Description

RS-485 is intended for network lengths up to 4000', but the maximum system data rate decreases as the transmission length increases. Devices operating at 10Mbps are limited to lengths less than 100'.

Twisted pair is the cable of choice for RS-485 networks. Twisted pair cables tend to pick up noise and other electromagnetically induced voltages as common mode signals, which are effectively rejected by the differential receiver in this IC.

Proper termination is imperative to minimize reflections. In point-to-point, or point-to-multipoint (single driver on bus) networks, the main cable should be terminated in its characteristic impedance (typically 120Ω) at the end farthest from the driver. In multi-receiver applications, stubs connecting receivers to the main cable should be kept as short as possible. Multipoint (multi-driver) systems require that the main cable be terminated in its characteristic impedance at both ends. Stubs connecting a transceiver to the main cable should be kept as short as possible.

The AiP485A may also be used at slower data rates over longer cables, but there are some limitations. The Rx is optimized for high speed operation, so its output may glitch if the Rx input differential transition times are too slow. Keeping the transition times below 500ns, which equates to the Tx driving a 1000' (305m) CAT 5 cable, yields excellent performance over the full operating temperature range.

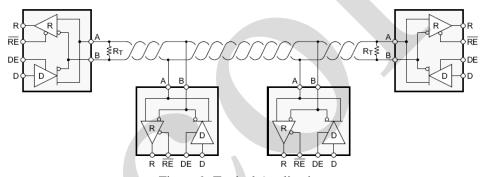


Figure 9. Typical Application

6.1. Receiver (Rx) Features

AiP485A utilize a differential input receiver for maximum noise immunity and common mode rejection. Input sensitivity is better than ±200mV, as required by the RS-485 specifications. Rx outputs feature high drive levels to ease the design of optically coupled isolated interfaces.

Receiver input resistance of $100k\Omega$ is eight times the RS-485 "Unit Load (UL)" requirement of $12k\Omega$ minimum. Thus, these products are known as UL/8 transceivers, and there can be up to 256 of these devices on a network while still complying with the RS-485 loading specification. Rx inputs function with common mode voltages as great as $\pm 7V$ outside the power supplies (i.e., $\pm 12V$ and $\pm 7V$), making them ideal for long networks where induced voltages are a realistic concern.

6.2. Driver (Tx) Features

AiP485A driver is a differential output device that delivers at least 2.1V across a 54Ω load (RS-485). The drivers feature low propagation delay skew to maximize bit width, and to minimize EMI, and all drivers are three-stable via the active high DE input.

Address:Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province 12/17 http://www.i-core. cn P.C.: 214072 VER: 2021-05-A1

Tab: 835-12 rev:B3 Number: AiP485A-AX-TX-B008EN

6.3, Full Fail-Safe

The receiver includes a "full fail-safe" function that guarantees a high level receiver output if the receiver inputs are unconnected (floating), shorted together, or connected to a terminated bus with all the transmitters disabled. The receiver easily meets the data rates supported by the corresponding driver, and the receiver output is three-stable via the active low /RE input.

6.4. Hot Plug Function

When a piece of equipment powers up, there is a period of time where the processor or ASIC driving the RS-485 control lines (DE, /RE) is unable to ensure that the RS-485 Tx and Rx outputs are kept disabled. If the equipment is connected to the bus, a driver activating prematurely during power-up may crash the bus. To avoid this scenario, the AiP485A devices incorporate a "Hot Plug" function. Circuitry monitoring V_{CC} ensures that, during power-up and power-down, the Tx and Rx outputs remain disabled, regardless of the state of DE and /RE, if V_{CC} is less than ~2.5V. This gives the processor/ASIC a chance to stabilize and drive the RS-485 control lines to the proper states.

6.5 Detailed Design Procedure

In order to protect bus nodes against high-energy transients, the implementation of external transient protection devices is necessary.

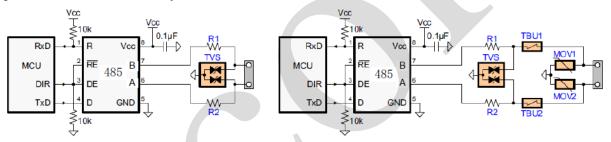


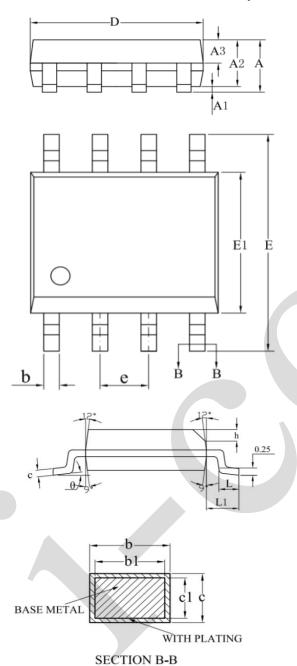
Figure 10. Transient Protections Against ESD, EFT, and Surge Transients

The left circuit shown in Figure 10 provides surge protection of ≥500V transients, while the right protection circuits can withstand surge transients of 5KV. Table 1 shows the associated Bill of Materials.

Table 1. Bill of Materials

Device	Function	Order Number	Manufacturer				
485	5-V, 10Mbps RS-485 Transceiver	AiP485A	i-core				
R1,R2	10-Ω, Pulse-Proof Thick-Film Resistor	CRCW0603010RJNEAHP	Vishay				
TVS	Bidirectional 400-W Transient Suppressor	CDSOT23-SM712	Bourns				
TBU1,TBU2	Bidirectional	TBU-CA-065-200-WH	Bourns				
MOV1,MOV2	200mA Transient Blocking Unit 200-V. Metal- Oxide Varistor	MOV-10D201K	Bourns				

Address:Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province
http://www.i-core. cn
P.C.: 214072
VER: 2021-05-A1

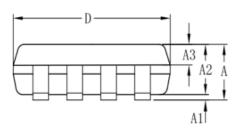

Wuxi I-CORE Electronics Co., Ltd. Tab: 835-12 rev:B3 Number: AiP48

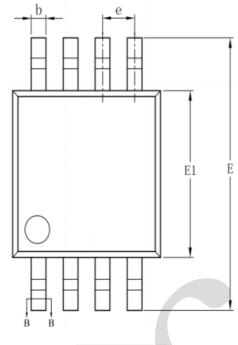
Number: AiP485A-AX-TX-B008EN

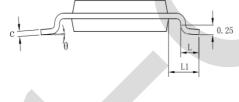
7. Package Information

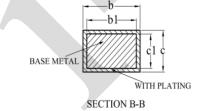
7.1, SOP8

SOP8(SO1R)

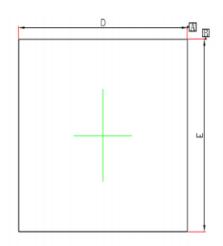

SYMBOL	MILLIMETER				
STMBOL	MIN	NOM	MAX		
A	_		1.75		
A1	0.10		0.225		
A2	1.30	1.40	1.50		
A3	0.60	0.65	0.70		
Ь	0.39		0.47		
b1	0.38	0.41	0.44		
c	0.20		0.24		
c1	0.19	0.20	0.21		
D	4.80	4.90	5.00		
Е	5.80	6.00	6.20		
E1	3.80	3.90	4.00		
e	1.27BSC				
h	0.25	_	0.50		
L	0.50	_	0.80		
L1	1.05REF				
θ	0	_	8°		

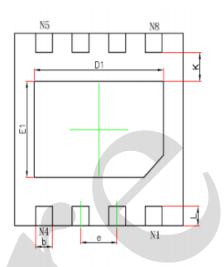


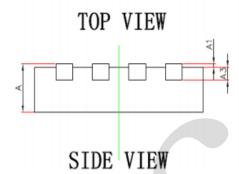

Wuxi I-CORE Electronics Co., Ltd. Tab: 835-12 rev:B3 Number: AiP48


Number: AiP485A-AX-TX-B008EN

7.2, MSOP8


MSOP8(VS1R)


SYMBOL	MILLIMETER					
STMBOL	MIN	NOM	MAX			
A			1.10			
A1	0.05		0.15			
A2	0.75	0.85	0.95			
A3	0.30	0.35	0.40			
ь	0.28	_	0.36			
b1	0.27	0.30	0.33			
С	0.15		0.19			
cl	0.14	0.15	0.16			
D	2.90	3.00	3.10			
Е	4.70	4.90	5.10			
E1	2.90	3.00	3.10			
e	0.65BSC					
L	0.40		0.70			
L1	0.95REF					
θ	0		8°			



Number: AiP485A-AX-TX-B008EN

DFNWB3X3-8L-F(DF6R)

BOTTOM VIEW

Symbol	Dimensions Ir	Millimeters	Dimensions In Inches			
	Min.	NOM.	Min.	NOM.		
Α	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035		
A1	0.000	0.050	0.000	0.002		
A3	0.203F	REF.	0.008REF.			
D	3.000E	BSC.	0.118BSC.			
E	3.000E	BSC.	0.118BSC.			
D1	2.200	2.400	0.087	0.094		
E1	1.400	1.600	0.055	0.063		
k	0.250	MIN.	0.010MIN.			
b	0.250	0.350	0.010	0.014		
е	0.650	ΓΥΡ.	0.026TYP.			
L	0.224	0.376	0.009 0.01			

Tab: 835-12 rev:B3 Number: AiP485A-AX-TX-B008EN

8. Statements And Notes

8.1. The name and content of Hazardous substances or Elements in the product

		Hazardous substances or Elements								
Part name	Lead and lead compou nds	Mercur y and mercur y compo unds	Cadm ium and cadmi um comp ounds	Hexaval ent chromiu m compoun ds	Polybro minated biphenyl s	Polybro minate d biphen yl ethers	Dibutyl phthala te	Butylbe nzyl phthala te	Di-2-et hylhex yl phthala te	Diisobu tyl phthala te
Lead frame	0	0	0	0	0	0	0	0	0	0
Plastic resin	0	0	0	0	0	0	0	0	0	0
Chip	0	0	0	0	0	0	0	0	0	0
The lead	0	0	0	0	0	0	0	0	0	0
Plastic sheet installed	0	0	0	0	0	0	0	0	0	0
explanatio n	 indicates that the content of hazardous substances or elements in the detection limit of the following the SJ/T11363-2006 standard. indicates that the content of hazardous substances or elements exceeding the SJ/T11363-2006 Standard limit requirements. 									

8.2. Notion

Recommended carefully reading this information before the use of this product;

The information in this document are subject to change without notice;

This information is using to the reference only, the company is not responsible for any loss;

The company is not responsible for the any infringement of the third party patents or other rights of the responsibility.

Address:Building B4,NO.777,Jianzhu Road,Binhu District,Wuxi City,Jiangsu Province
http://www.i-core.cn
P.C.: 214072
VER: 2021-05-A1