M AX 3085C SA

CMOS - Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

GENERAL DESCRIPTION

The MAX3085 is low-power transceivers for RS-485 and RS-422 communication. IC contains one driver and one receiver. The driver slew rates of the MAX3085 is not limited, allowing them to transmitup to 2.5 Mbps . These transceivers draw between $120 \mu \mathrm{~A}$ and $500 \mu \mathrm{~A}$ of supply current when unloaded or fully loaded with disabled drivers. All parts operate from a single 5 V supply. Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state. The receiver input has a fail-safe feature that guarantees a logic-high output if the input is open circuit.The MAX3085 is designed for half-duplex applications.

FEATURES

- Extended ESD Protection for RS-485/RS-422 I/OPins $\pm 15 \mathrm{kV}$ Using Human Body Model
- Low Quiescent Current: $300 \mu \mathrm{~A}$
- $\quad-7 \mathrm{~V}$ to +12 V Common-Mode Input Voltage Range
- Three-StateOutputs
- 30ns Propagation Delays, 5 ns Skew
- Full-Duplex and Half-Duplex Versions Available
- Operate from a Single 5V Supply
- Allows up to 32 Transceivers on the Bus
- Data rate: $2,5 \mathrm{Mbps}$
- Current-Limiting and Thermal Shutdown for Driver Overload Protection

Pinning

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC) 12V
Control Input Voltage -0.5 V to $(\mathrm{V} \mathrm{Cc}+0.5 \mathrm{~V})$
Driver Input Voltage (DI) -0.5 V to $\left(\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}\right)$
Driver Output Voltage (A, B) -8 V to +12.5 V
Receiver Input Voltage (A, B) -8 V to +12.5 V
Receiver Output Voltage (RO) -0.5V to ($\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$)

Continuous Power Dissipation
8-Pin Plastic DIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 727 mW
8 -Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 471 mW
Operating Temperature Ranges $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec) $+300^{\circ} \mathrm{C}$

M AX 3085C SA

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Notes 1,2$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Differential Driver Output (no load)	VOD1					5	V
Differential Driver Output (with load)	VOD2	$\mathrm{R}=50 \Omega$ (RS-422)		2			V
		$R=27 \Omega$ (RS-485), Figure 4		1.5		5	
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	$\Delta \mathrm{VOD}$	$R=27 \Omega$ or 50Ω, Figure 4				0.2	V
Driver Common-Mode Output Voltage	VOC	$\mathrm{R}=27 \Omega$ or 50Ω, Figure 4				3	V
Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	$\triangle \mathrm{VOC}$	$R=27 \Omega$ or 50Ω, Figure 4				0.2	V
Input High Voltage	VIH	DE, DI, RE		2.0			V
Input Low Voltage	VIL	DE, DI, RE				0.8	V
Input Current	IIN1	DE, DI, RE				± 2	$\mu \mathrm{A}$
Input Current(A, B)	IIN2	$\begin{aligned} & \mathrm{DE}=0 \mathrm{~V} \\ & \mathrm{VCC}=0 \mathrm{~V} \text { or } 5.25 \mathrm{~V}, \end{aligned}$	$\mathrm{VIN}=12 \mathrm{~V}$			1.0	mA
			$\mathrm{VIN}=-7 \mathrm{~V}$			-0.8	
Receiver Differential Threshold Voltage	VTH	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {cm }} \leq 12 \mathrm{~V}$		-0.2		0.2	V
Receiver Input Hysteresis	$\Delta \mathrm{VTH}$	$\mathrm{VCM}=0 \mathrm{~V}$			70		mV
Receiver Output High Voltage	VOH	$\mathrm{IO}=-4 \mathrm{~mA}, \mathrm{VID}=200 \mathrm{mV}$		3.5			V
Receiver Output Low Voltage	VOL	$\mathrm{IO}=4 \mathrm{~mA}, \mathrm{VID}=-200 \mathrm{mV}$				0.4	V
Three-State (high impedance) Output Current at Receiver	IOZR	$0.4 \mathrm{~V} \leq \mathrm{VO} \leq 2.4 \mathrm{~V}$				± 1	$\mu \mathrm{A}$
Receiver Input Resistance	RIN	$-7 \mathrm{~V} \leq \mathrm{VCM} \leq 12 \mathrm{~V}$					k Ω

DC ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{Vcc}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {min to }}$ Tmax, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	$\begin{gathered} \hline \text { TY } \\ \mathbf{P} \end{gathered}$	MAX	$\begin{gathered} \hline \text { UNIT } \\ \mathrm{S} \end{gathered}$
No-Load Supply Current (Note 3)	ICC	$\mathrm{DE}=\mathrm{V}_{\mathrm{cc}}$		500	900	
		$\mathrm{RE}=0 \mathrm{~V}$ or VCC		300	500	$\mu \mathrm{A}$
		$D E=0 V$				
Driver Short-Circuit Current,						
	IOSD1	$-7 \mathrm{~V} \leq \mathrm{VO} \leq 12 \mathrm{~V}$ ((ote 4)	35		250	mA
VO = High						
Driver Short-Circuit Current,						
	IOSD2	$-7 \mathrm{~V} \leq \mathrm{VO} \leq 12 \mathrm{~V}$ (Note 4)	35		250	mA
$\mathrm{VO}=$ Low						
Receiver Short-Circuit Current	IOSR	$\mathrm{OV} \leq \mathrm{VO} \leq \mathrm{VCC}$	7		95	mA

SWITCHING CHARACTERISTICS

($\mathrm{Vcc}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\mathrm{max}}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBO L	CONDITIONS	MIN	$\begin{gathered} \hline \text { TY } \\ \mathbf{P} \end{gathered}$	MAX	UNITS	
Driver Input to Output	tPLH	RDIFF $=54 \Omega$	10	30	60	ns	
	tPHL	CL1 = CL2 = 100pF	10	30	60		
Driver Output Skew to Output	tSKEW	$\begin{aligned} & \text { RDIFF }=54 \Omega, \text { CL1 }=\text { CL2 }= \\ & 100 \mathrm{pF} \end{aligned}$		5	10	ns	
Driver Enable to Output High	tZH	CL= 100pF, S2 closed		40	70	ns	
Driver Enable to Output Low	tZL	$C L=100 \mathrm{pF}$, S1 closed		40	70	ns	
Driver Disable Time from Low	tLZ	CL= 15pF, S1 closed		40	70	ns	
Driver Disable Time from High	tHZ	$C L=15 \mathrm{pF}$, S 2 closed		40	70	ns	
\| tPLH - tPHL	Differential	tSKD	RDIFF $=54 \Omega$		13		ns
Receiver Skew		CL1 = CL2 = 100pF					
Receiver Enable to Output Low	tZL	CRL $=15 \mathrm{pF}$, S1 closed		20	50	ns	
Receiver Enable to Output High	tZH	CRL $=15 \mathrm{pF}$, S2 closed		20	50	ns	
Receiver Disable Time from Low	tLZ	CRL = 15pF, S1 closed		20	50	ns	
Receiver Disable Time from High	tHZ	CRL = 15pF, S2 closed		20	50	ns	
Maximum Data Rate	fMAX		2.5			Mbps	

Notes:

1. All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
2. All typical specifications are given for $\mathrm{VCC}=5 \mathrm{~V}$ and $\mathrm{TA}=+25^{\circ} \mathrm{C}$
3. Supply current specification is valid for loaded transmitters when $\mathrm{DE}=0 \mathrm{~V}$
4. Applies to peak current. See Typical Operating Characteristics.

MAX3085C SA

Operation timing diagrams

Transmission					Receipt				
Inputs			Outputs X		Inputs			Outputs	
RE	DE	DI	Z	Y	RE	DE	$\mathrm{A}-\mathrm{B}$	RO	
X	1	1	0	1	0	0	+0.2 V	1	
X	1	0	1	0	0	0	-0.2 V	0	
0	0	X	Z	Z	0	0	open	1	
1	0	X	Z	Z	1	0	X	Z	

X-don't care

Z-high resistance

(DIP8)

$\oplus{ }^{-25}(0.010)(1 /]$

NOTES:

1. Dimensions "A", "B" do not include mold flash or protrusions.

Maximum mold flash or protrusions $0.25 \mathrm{~mm}(0.010)$ per side.

	Dimension, mm	
Symbol	MIN	MAX
\mathbf{A}	8.51	10.16
\mathbf{B}	6.1	7.11
\mathbf{C}		5.33
\mathbf{D}	0.36	0.56
\mathbf{F}	1.14	1.78
\mathbf{G}	2.54	
\mathbf{H}	7.62	
\mathbf{J}	0°	10°
\mathbf{K}	2.92	3.81
\mathbf{L}	7.62	8.26
\mathbf{M}	0.2	0.36
\mathbf{N}	0.38	

(SOP8)

NOTES:

1. Dimensions A and B do not include mold flash or protrusion.
2. Maximum mold flash or protrusion $0.15 \mathrm{~mm}(0.006)$ per side for A ; for $\mathrm{B}-0.25 \mathrm{~mm}(0.010)$ per side.

	Dimension, mm	
Symbol	MIN	MAX
\mathbf{A}	4.8	5
\mathbf{B}	3.8	4
\mathbf{C}	1.35	1.75
\mathbf{D}	0.33	0.51
\mathbf{F}	0.4	1.27
\mathbf{G}	1.27	
\mathbf{H}	5.72	
\mathbf{J}	0°	8°
\mathbf{K}	0.1	0.25
\mathbf{M}	0.19	0.25
\mathbf{P}	5.8	6.2
\mathbf{R}	0.25	0.5

