MOSFET – Power, N-Channel, SUPERFET III, FRFET

650 V, 65 A, 40 m Ω

Description

SUPERFET III MOSFET is ON Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This advanced technology is tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate.

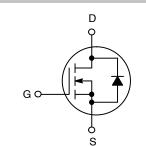
Consequently, SUPERFET III MOSFET is very suitable for the various power system for miniaturization and higher efficiency.

SUPERFET III FRFET MOSFET's optimized reverse recovery performance of body diode can remove additional component and improve system reliability.

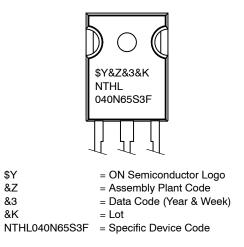
Features

- 700 V @ $T_J = 150^{\circ}C$
- Typ. $R_{DS(on)} = 32 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Q_g = 158 nC)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 1366 pF)
- 100% Avalanche Tested
- These Devices are Pb-Free and are RoHS Compliant

Applications


- Telecom / Server Power Supplies
- Industrial Power Supplies
- EV Charger
- UPS / Solar

ON Semiconductor®


www.onsemi.com

V _{DSS}	R _{DS(ON)} MAX	I _D MAX		
650 V	40 mΩ @ 10 V	65 A		

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

Symbol	Parame	NTHL040N65S3F	Unit	
V _{DSS}	Drain to Source Voltage		650	V
V _{GSS}	Gate to Source Voltage	– DC	±30	V
		– AC (f > 1 Hz)	±30	
I _D	Drain Current	– Continuous (T _C = 25°C)	65	А
		– Continuous (T _C = 100°C)	45	
I _{DM}	Drain Current	- Pulsed (Note 1)	162.5	А
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		1009	mJ
I _{AS}	Avalanche Current (Note 2)		9	А
E _{AR}	Repetitive Avalanche Energy (Note 1)		4.46	mJ
dv/dt	MOSFET dv/dt		100	V/ns
	Peak Diode Recovery dv/dt (Note 3)		50	
P _D	Power Dissipation	(T _C = 25°C)	446	W
		– Derate Above 25°C	3.57	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
ΤL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 seconds		300	°C

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, Unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Repetitive rating: pulse-width limited by maximum junction temperature. 2. $I_{AS} = 9 \text{ A}, R_G = 25 \Omega$, starting $T_J = 25^{\circ}\text{C}$. 3. $I_{SD} \leq 32.5 \text{ A}, \text{ di/dt} \leq 200 \text{ A/}\mu\text{s}, V_{DD} \leq 400 \text{ V}, \text{ starting } T_J = 25^{\circ}\text{C}$.

THERMAL CHARACTERISTICS

Symbol	Parameter	NTHL040N65S3F	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	0.28	°C/W
R _{θJA}	Thermal Resistance, Junction to Ambient, Max.	40	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity	
NTHL040N65S3F	NTHL040N65S3F	TO-247	Tube	N/A	N/A	30 Units	

FI FOTRICAL CHARACTERISTICS (T 25°C upleas atherwise noted)

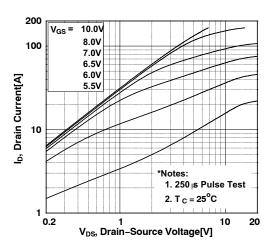
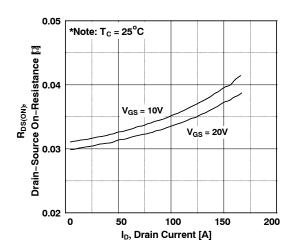
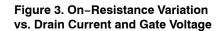
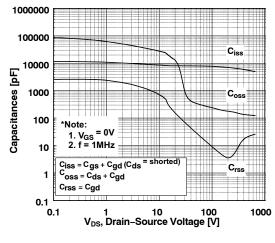
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
OFF CHARACT	ERISTICS	•				
BV _{DSS}	Drain to Source Breakdown Voltage	V_{GS} = 0 V, I_D = 1 mA, T_J = 25°C	650	-	-	V
		V_{GS} = 0 V, I _D = 1 mA, T _J = 150°C	700	-	-	V
$\Delta \text{BV}_{\text{DSS}} / \Delta \text{T}_{\text{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = 15$ mA, Referenced to 25° C	-	0.63	_	V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 650 V, V _{GS} = 0 V	-	-	10	μA
		$V_{DS} = 520 \text{ V}, \text{ T}_{\text{C}} = 125^{\circ}\text{C}$	-	213	_	
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 30$ V, $V_{DS} = 0$ V	-	-	±100	nA
ON CHARACTE	RISTICS					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 2.1 \text{ mA}$	3.0	-	5.0	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 32.5 A	-	32	40	mΩ
9 _{FS}	Forward Transconductance	V _{DS} = 20 V, I _D = 32.5 A	-	48	-	S
DYNAMIC CHA	RACTERISTICS					
C _{iss}	Input Capacitance	V_{DS} = 400 V, V_{GS} = 0 V, f = 1 MHz	-	5940	_	pF
Coss	Output Capacitance	_	-	140	_	pF
C _{oss(eff.)}	Effective Output Capacitance	$V_{DS} = 0 \text{ V}$ to 400 V, $V_{GS} = 0 \text{ V}$	-	1366	_	pF
C _{oss(er.)}	Energy Related Output Capacitance	$V_{DS} = 0 \text{ V}$ to 400 V, $V_{GS} = 0 \text{ V}$	-	247	_	pF
Q _{g(tot)}	Total Gate Charge at 10V	$V_{DS} = 400 \text{ V}, \text{ I}_{D} = 32.5 \text{ A}, \text{ V}_{GS} = 10 \text{ V}$	-	158	_	nC
Q _{gs}	Gate to Source Gate Charge	- (Note 4)	-	48	_	nC
Q _{gd}	Gate to Drain "Miller" Charge		-	60	_	nC
ESR	Equivalent Series Resistance	f = 1 MHz	-	1.1	_	Ω
WITCHING CH	IARACTERISTICS	•	•			
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 400 \text{ V}, \text{ I}_{D} = 32.5 \text{ A},$	-	41	-	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, \text{ R}_{g} = 2.2 \Omega$ (Note 4)	-	41	-	ns
t _{d(off)}	Turn-Off Delay Time		-	101	-	ns
t _f	Turn-Off Fall Time		-	29	-	ns
SOURCE-DRAI	N DIODE CHARACTERISTICS	•		•		
۱ _S	Maximum Continuous Source to Drain Diode Forward Current			-	65	А
I _{SM}	Maximum Pulsed Source to Drain Diode Forward Current		-	-	162.5	Α
V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 32.5 \text{ A}$	-	-	1.3	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 V, I_{SD} = 32.5 A,$	_	145	-	ns
Qrr	Reverse Recovery Charge	dI _F /dt = 100 A/μs	_	737	_	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Essentially independent of operating temperature typical characteristics.

Reverse Recovery Charge

 Q_{rr}

TYPICAL PERFORMANCE CHARACTERISTICS

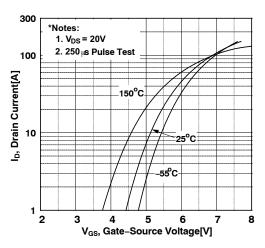
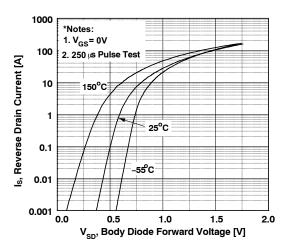
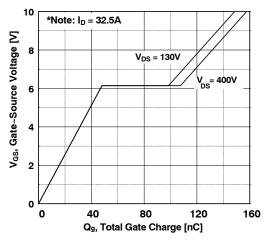
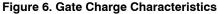
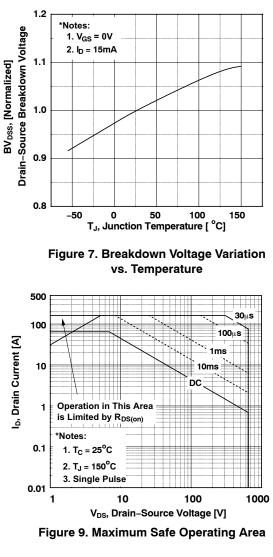
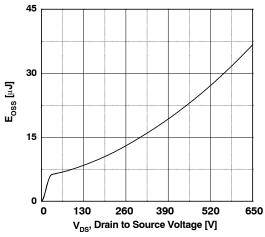
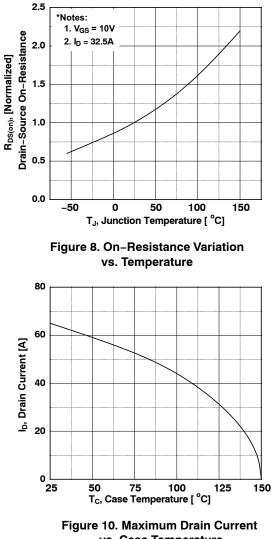

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature



TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

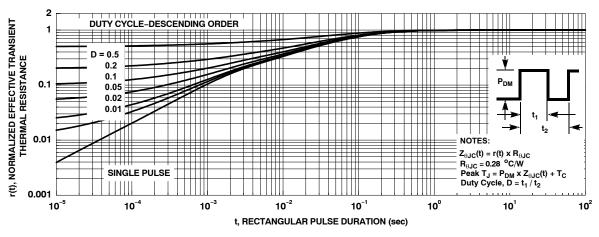
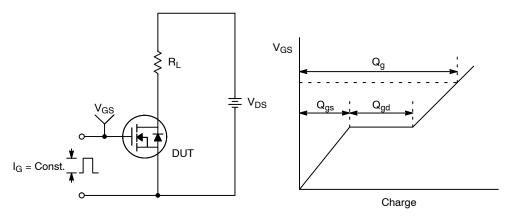



Figure 12. Transient Thermal Response Curve

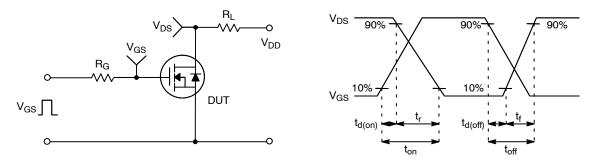


Figure 14. Resistive Switching Test Circuit & Waveforms

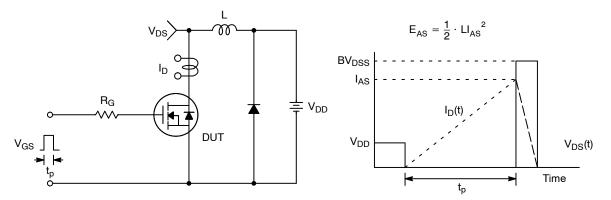


Figure 15. Unclamped Inductive Switching Test Circuit & Waveforms

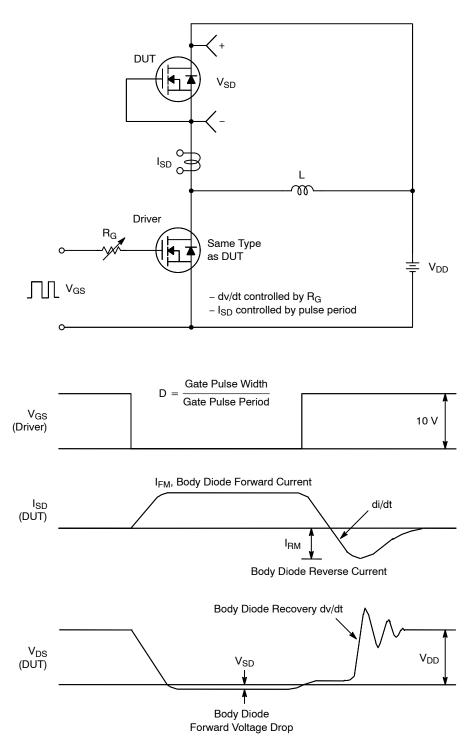
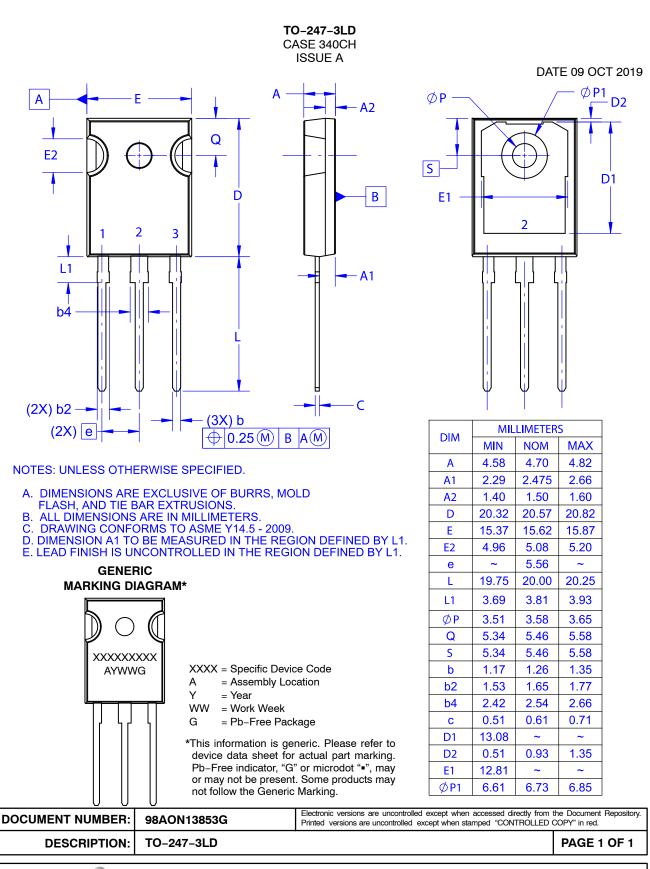



Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

FRFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.