

应急灯专用检测芯片

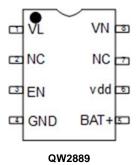
概述

QW2889 是一款应急检测控制专用芯片。芯片采用专利的高压隔离和检测技术,无需任何外围元件直接监测交流输入信号状态,并直接或间接驱动 LED 灯串。同时支持全电压 85-265Vac 输入。

QW2889集成了高精度单节锂电池管理,以及 MOSFET。具有过充保护、过放保护功能。

QW2889 EN 端支持直接串联限流电阻来直接驱动单串 LED,同时也支持外接升压电路来驱动多串 LED。

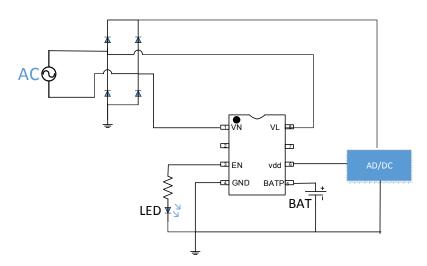
QW2889 采用专利技术,在多灯并联应用的情况下,LED 灯具的零火线不需区分。


QW2889 采用符合 ROHS SP-8 封装,工作温度范围-40 度至 105 度。

特性

- 极简的应用电路
- 精准的交流输入阻抗检测
- 85-265Vac 全电压输入
- EN 直接驱动 LED 负载
- 完善的电池保护及管理
- 无需区分零火线

管脚封装



(Top View) SOP-8

应用

- 全并全亮 LED 应急灯
- 全串半亮 LED 应急灯
- 带升压电路 LED 应急灯
- 消防应急灯

典型应用线路

图一 QW2889 典型应用电路



应急灯专用检测芯片

管脚描述

管脚号	管脚名称	功能
1	VN	交流零线输入
2	NC	
3	EN	输出电流/高电平
4	GND	芯片地应
5	BATP	接电池正端
6	VDD	接充电器输出端
7	NC	
8	VL	交流火线输入

内部原理图

图二 内部原理图

应急灯专用检测芯片

极限参数 (@Ta= +25°C, unless otherwise specified. Note 4)

参数	符号	值	单位
BATP Vdd 电压	V _{cc}	-0.3 to GND+10V	V
EN 电压	VD	-0.3 to BATP +7V	V
VL, VN	V _L , V _n	600V	V
工作结温	TJ	+150	°C
存储温度	T _{STG}	-65 to +150	°C
热阻(Note 5)	θ_{JA}	120	°C/W
焊接温度 (Soldering, 10sec)	TLEAD	+300	°C
ESD (Machine Model)	_	200	V
ESD (Human Body Model)	_	2000	V

建议工作条件

符号	参数	最小	最大	单位
TA	环境温度	-40	+105	°C

电气参数(@TA=+25°C, unless otherwise specified. Note 6)

参数	符号	条件	最小	典型	最大	单位
待机电流部分	待机电流部分					
静态电流	Icc	V _{CC} =4.5V		60	_	uA
内置 功率 NMOS 部分						
MOS 导通阻抗	R _{DSON}	_	_	0.2	1	Ω
Vdd 与 BATP 之间导通阻抗	Rd			0.35		Ω
交流检测部分						
交流阻抗门槛				1000		ΚΩ
电池保护部分	电池保护部分					
过充电保护启动电压		-	4.25	4.3	4.35	V
过充电释放电压			3.75	3.9	4.15	V
过放电保护启动电压		_	2.55	2.65	2.75	V
过放电释放电压			3.1	3.2	3.3	V
过充电检测延时				60	200	mS
过放电检测延时				20	60	mS

应急灯专用检测芯片

应用信息

1、交流检测

QW2889 是一颗专业应急检测控制芯片,可以根据VL与VN之间的阻抗状态来实现EN脚电平转换。当VL与VN之间正常输入85-265Vac电压时,内部的开关管截止,EN输出低电平;当VL与VN之间阻抗大于阈值电阻时,内部的开关管截止,EN输出低电平;只有当VL与VN之间阻抗小于阈值电阻时,EN输出高电平。

注:以上逻辑正常工作的必要前提条件是BATP与BATN之间电压在正常工作允许范围之内。

交流输入	EN 输出	NOTE
AC 有	高阻	
AC 开路	高阻	
AC 短路	高电平 (电池电压)	L和 N之间的阻抗小于阈值电阻

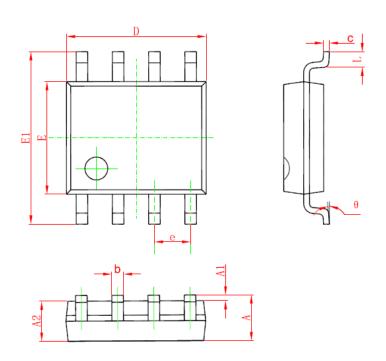
表 1 EN 输出的逻辑表

2、电池管理

QW2889内部集成了完备的单节锂电池保护入管理模块。 电池保护管理包括: 过充保护, 过放保护,以及充电器检测线路。由于电池的充放电管理检测的电压是电池电压, 所以, 在设计PCB layout的时候,应该尽量将QW2889芯片的BATP (PIN5), GND (PIN4)靠近电池的端子。 在靠近这两个管脚的地方加高频滤波电容, 也会有利于抑制AC/DC在开关动作的时候, 对电池电压采样的干扰。 推荐使用1uF的贴片电容,并且尽量将电容靠近芯片的管脚。

3、输出电流

QW2889 的EN PIN 内置一个200毫欧的开关。 当EN输出高电平的时候, 可以在EN PIN和LED的输出之间串一个限流电阻, 来给LED负载供电。


4、PCB 布板的注意事项

合理的PCB 布局对于最大程度保证系统稳定性以及低噪声来说是很重要的。使用多层PCB 板是避免噪声干扰的一种很有效的办法。为了有效减小电流回路的噪声,输入旁路电容应当另行接地。将大电流接地回路、输入旁路电容的接地引线及输出滤波器的接地引线连接到同一点(星形接地接法),以最大限度地减小接地噪声。

应急灯专用检测芯片

封装信息

符号	尺寸(毫米)		尺寸 (英寸)		
	最小	最大	最小	最大	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270 (BSC)		0.050 (BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	