RClamp0502N RailClamp®

Low Capacitance TVS Diode Array

PROTECTION PRODUCTS - RailClamp®

Description

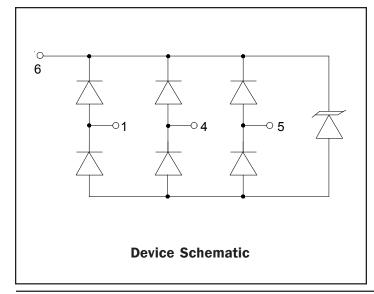
The RailClamp® series is a family of ultra low capacitance TVS arrays designed to protect high speed data interfaces. This series has been specifically designed to protect sensitive components which are connected to high-speed data and transmission lines from overvoltage caused by **ESD** (electrostatic discharge), **CDE** (Cable Discharge Events), and **EFT** (electrical fast transients). They are designed for use in applications where board space is at a premium. Each device requires less than 1.2mm² of PCB area and will protect up to two high speed data lines.

The monolithic design incorporates surge rated, low capacitance steering diodes and a TVS diode in a single package. Each line has a typical capacitance of <0.5pF to ground. The capacitance of each line is well matched for consistant signal balance. A connection to the TVS is provided for protection of external voltage buses, such as those found in USB applications. This device is optimized for ESD protection of portable electronics. They may be used to meet the ESD immunity requirements of IEC 61000-4-2, Level 4 (±15kV air, ±8kV contact discharge).

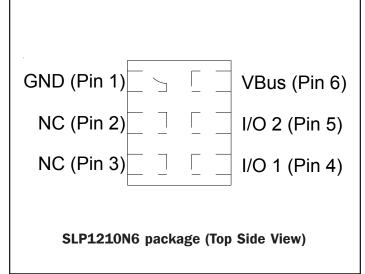
The RClamp0502N is in a 6-pin, RoHS/WEEE compliant, SLP1210N6 package. It measures $1.2 \times 1.0 \times 0.58$ mm. The small package makes it ideal for use in portable electronics such as cell phones, laptops, and digital still cameras.

<u>Features</u>

- ◆ ESD protection for high-speed data lines to IEC 61000-4-2 (ESD) ±15kV (air), ±8kV (contact) IEC 61000-4-4 (EFT) 40A (5/50ns)
- ◆ Array of surge rated diodes with internal TVS Diode
- Small package saves board space
- ◆ Protects two I/O lines and a power line
- Low capacitance: 0.3pF typical
- Low clamping voltage
- Solid-state silicon-avalanche technology


Mechanical Characteristics

- ◆ SLP1210N6 Package
- RoHs/WEEE Compliant
- ◆ Nominal Dimensions: 1.2 x 1.0 x 0.58 mm
- Lead Pitch: 0.4mm
- Lead Finish: NiPdAu
- Marking : Marking Code
- Packaging : Tape and Reel


Applications

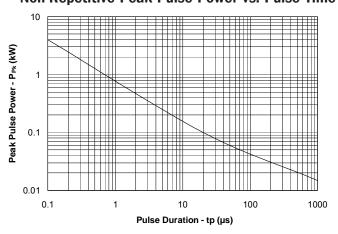
- ◆ USB
- MMC Port
- Serial ATA
- Video Port

Circuit Diagram

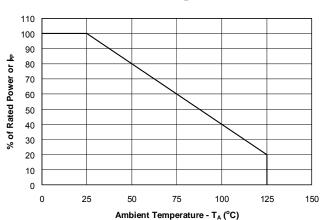
Pin Configuration

Absolute Maximum Rating

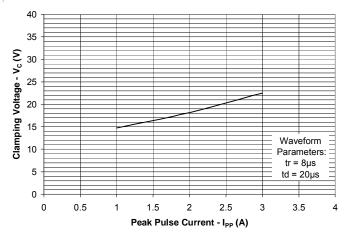
Rating	Symbol	Value	Units
Peak Pulse Power (tp = 8/20μs)	P_{pk}	100	Watts
Peak Pulse Current (tp = 8/20μs)	I _{PP}	3	А
ESD per IEC 61000-4-2 (Air) ESD per IEC 61000-4-2 (Contact)	V _{ESD}	±15 ±8	kV
Operating Temperature	T _J	-55 to +125	°C
Storage Temperature	T _{STG}	-55 to +150	°C

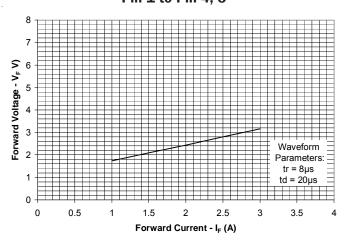

Electrical Characteristics (T = 25°C)

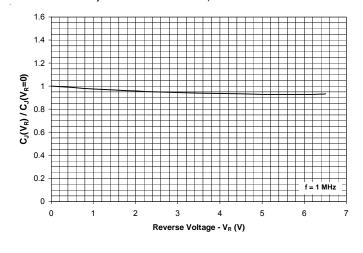
RClamp0502N									
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units			
Reverse Stand-Off Voltage	$V_{_{\mathrm{RWM}}}$	Pin 6 to GND			6.5	V			
Reverse Breakdown Voltage	$V_{_{BR}}$	I _t = 1mA Pin 6 to GND	7	9.5	12	V			
Reverse Leakage Current	I _R	V _{RWM} = 6.5V, T=25°C Pin 6 to GND			1	μΑ			
Forward Voltage	V _F	I _f = 15mA Any I/O to pin 6		0.9	1.2	V			
Clamping Voltage	V _c	$I_{PP} = 1A$, tp = 8/20µs Any I/O pin to Ground			16.5	V			
Clamping Voltage	V _c	I_{pp} = 3A, tp = 8/20µs Any I/O pin to Ground			30	V			
Junction Capacitance	C _j	V _R = 0V, f = 1MHz Any I/O pin to Ground		0.3	0.5	pF			
		V _R = 0V, f = 1MHz Between I/O pins		0.3	0.5	pF			

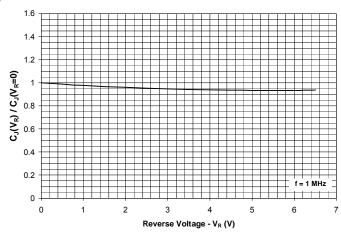


Typical Characteristics


Non-Repetitive Peak Pulse Power vs. Pulse Time


Power Derating Curve


Clamping Voltage vs. Peak Pulse Current I/O to Gnd - Pin 4, 5 to Pin 1


Foward Voltage vs. Forward Current Pin 1 to Pin 4, 5

Normalize Capacitance vs. Reverse Voltage I/O to Gnd - Pin 4, 5 to Pin 1

Normalize Capacitance vs. Reverse Voltage I/O to I/O - Pin 4 to Pin 5

Applications Information

Device Connection Options for Protection of Two High- Speed Data Lines

Data line inputs are normally connected at pins 4 & 5 with the outputs connected at pins 2 & 3. Pin 1 is connected to ground. Note that the circuit at the ground pin is identical to the circuit at each data input/output pin. This is done to further reduce capacitance. The connection to ground should be made directly to a ground plane. The path length should also be kept as short as possible to minimize parasitic inductance. Pin 6 can be connected to Vcc biased or left not connected depending upon the application.

Protecting USB 2.0 Interfaces

The USB interface consists of Data (D- and D+) lines and a 5.25V voltage bus. Since these pins are part of the connector, they are vulnerable to ESD and cable discharge events. The RClamp0502N is designed to protect all four USB connections (VCC, D-, D+, and Gnd). Each device will protect one USB port. When the voltage on the data lines exceed the bus voltage (plus one diode drop), the internal rectifiers are forward biased conducting the transient current away from the protected controller chip. The TVS diode directs the surge to ground. The TVS diode also acts to suppress ESD strikes directly on the voltage bus. Thus, both power and data pins are protected with a single device.

Figure 1- Pin Configuration & Circuit Diagram

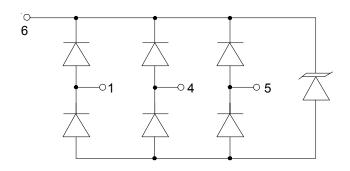
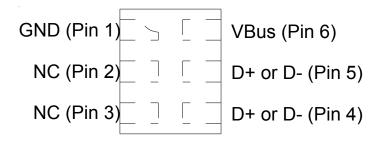
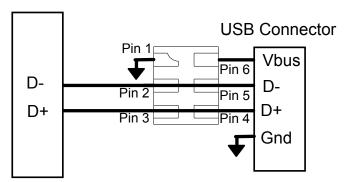




Figure 2 - USB 2.0 High Speed Protection

USB Controller

Applications Information - Spice Model

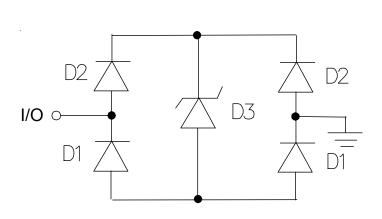
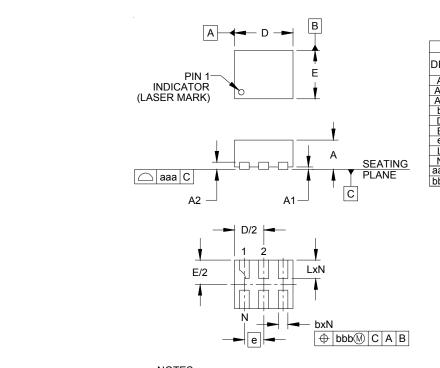
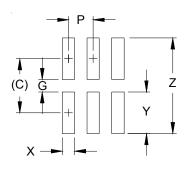



Figure 3 - RClamp0502N Spice Model

	RClamp0502N Spice Parameters								
Parameter	Unit	D1 (LCRD)	D2 (LCRD)	D3 (TVS)					
IS	Amp	1.0E-20	1.0E-20	2E-12					
BV	Volt	100	100	9					
VJ	Volt	0.7	0.7	0.6					
RS	Ohm	0.458	1.0	2.6					
IBV	Amp	1.0 E-3	1.0 E-3	1.0 E-3					
C10	Farad	0.4E-12	0.4E-12	56E-12					
TT	sec	2.541E-9	2.541E-9	2.541E-9					
М		0.058	0.058	0.23					
N		1.1	1.1	1.1					
EG	eV	1.11	1.11	1.11					

Outline Drawing -SLP1210N6

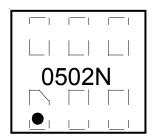


DIMENSIONS								
DIM	11	NCHE	S	MILL	IMET	ERS		
	MIN	NOM	MAX	MIN	NOM	MAX		
Α	.020	.023	.026	0.50	0.58	0.65		
A1	0.00	.001	.002	0.00	0.03	0.05		
A2		(.005)		(0.13)				
b	.006	.008	.010	0.15	0.20	0.25		
D	.043	.047	.051	1.10	1.20	1.30		
Е	.035	.039	.043	0.90	1.00	1.10		
е	.016 BSC			0.40 BSC				
L	.012	.015	.017	0.30	0.38	0.425		
N	6			6				
aaa		.003		0.08				
bbb	.004			0.10				

NOTES:

1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).

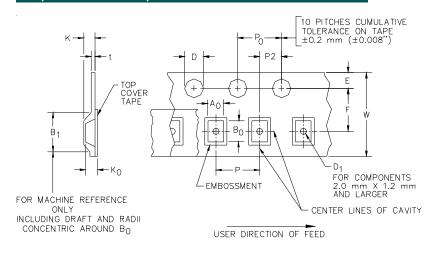
Land Pattern -SLP1210N6

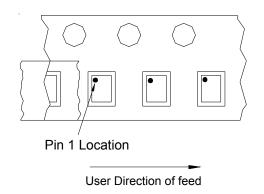

	DIMENSIONS							
DIM	INCHES	MILLIMETERS						
С	(.034)	(0.875)						
G	.008	0.20						
Р	.016	0.40						
Χ	.008	0.20						
Υ	.027	0.675						
Ζ	.061	1.55						

NOTES:

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET.

Marking Codes




Ordering Information

Part Number	Qty per Reel	Reel Size		
RClamp0502N.TCT	3,000	7 Inch		

RailClamp and RClamp are marks of Semtech Corporation

Tape and Reel Specification

AO	ВО	ко
1.21 ±0.10 mm	1.41 ±0.10 mm	0.74 ±0.10 mm

Device Orientation in Tape

Tape Width	B, (Max)	D	D1	E	F	K (MAX)	Р	PO	P2	T(MAX)	W
8 mm	4.2 mm (.165)	1.5 + 0.1 mm - 0.0 mm (0.59 +.005 000)	0.8 mm ±0.05 (.031)	1.750±.10 mm (.069±.004)	3.5±0.05 mm (.138±.002)	2.4 mm (.094)	4.0±0.1 mm (.157±.00- 4)	4.0±0.1 mm (.157±.00- 4)	2.0±0.05m- m (.079±.002)	0.4 mm (.016)	8.0 mm + 0.3 mm - 0.1 mm (.312±.012-

Contact Information

Semtech Corporation Protection Products Division 200 Flynn Road, Camarillo, CA 93012 Phone: (805)498-2111 FAX (805)498-3804

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Semtech:

RCLAMP0502N.TCT