

2W Class-K Audio Amplifier with RF-TDD Suppression and NCN

Features

- Built-In RNS Function, Excellent TDD Suppression
- NCN Function Protects the Speaker
- EEE Function, Greatly reduces EMI over the full bandwidth
- 2.0W into 8Ω at 4.2V(10% THD+N)
- 4 Selectable Gain, 12dB, 16dB, 24dB, 27.5dB
- 4 Mode selected by one-wire pulse
- Excellent Pop-Click Suppression
- Short-Circuit and Thermal Protection
- ±8KV HBM ESD, ±450mA Latch-up
- Small 3mm×3mm 20-Pin TQFN Package

Applications

- · Cellular Phones
- Portable Audio Devices
- · Mini Speakers

General Description

The AW8733A is a powerful Class-K audio amplifier that features RNS (RF-TDD Noise Suppression), NCN (Non-Crack-Noise) and EEE (Enhanced Emission Elimination).

The AW8733A features the RNS function which greatly reduces RF-TDD Noise.

The AW8733A features a built-in charge pump converter generates a 6.3V supply voltage. This provides a louder audio output than a stand-alone amplifier directly connected to the battery. The AW8733A features 2W output power (10% THD+N) into 8Ω load at 4.2V battery voltage.

The AW8733A features the NCN function, which adjusts the system gain automatically while detecting the "Crack" distortion of output signal, protects the speaker from damage at high power levels and brings the most comfortable listening experience to the customers.

The AW8733A is available in a small 3mm×3mm 20-Pin TQFN Package. It is specified over the extended -40 $^{\circ}$ C to +85 $^{\circ}$ C temperature range.

Pin Configuration and Top Mark

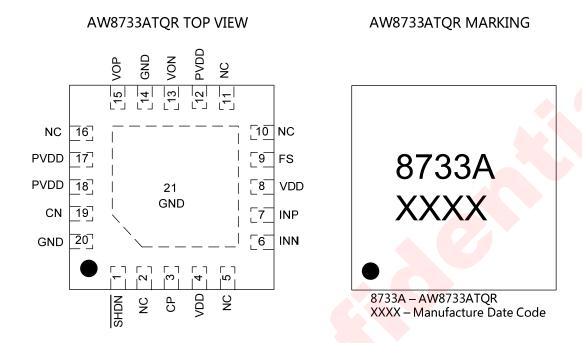


Figure 1 Pin Configuration and Top Mark of AW8733ATQR

Pin Definition and Function

No.	Symbol	Description	
1	SHDN	Shutdown and one-wire control pin	
3	СР	Positive Terminal of Flying capacitor	
4, 8	VDD	Supply Voltage.	
6	INN	Negative Amplifier Input	
7	INP	Positive Amplifier Input	
9	FS	Test pin. No Connect	
12, 17, 18	PVDD	Charge-Pump Output.	
13	VON	Negative Amplifier output	
14, 20	GND	Ground	
15	VOP	Positive Amplifier Output	
19	CN	Negative Terminal of Flying capacitor.	
21	GND	Exposed Pad. Connect to GND.	
2, 5, 10, 11, 16	NC	No Connect	

Typical Application

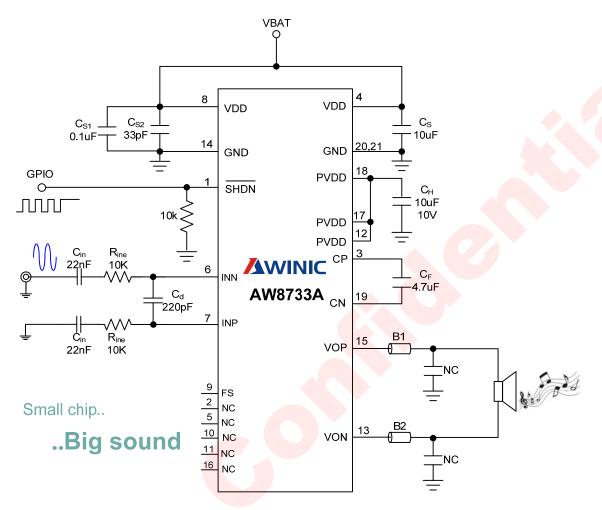


Figure 2 AW8733A Application Schematic With Single-Ended Input

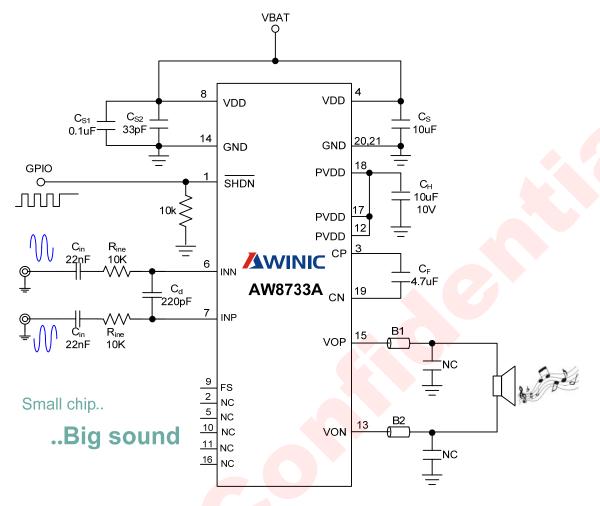
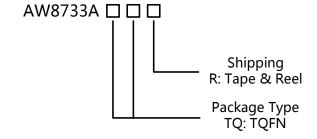



Figure 3 AW8733A Application Schematic With Differential Input

Ordering Information

Part Number	Temperature	Package	Marking	Packing Type	
AW8733ATQR	-40℃~85℃	3mmX3mm 20-Pin TQFN	8733A	6000 units/Tape and Reel	

Absolute Maximum Ratings (1)

Parameter	Unit		
Supply voltage V _{DD}	-0.3V to 7V		
INP、INN、SHDN Pin Voltage	-0.3V to V _{DD} +0.3V		
Package Thermal Resistance θ_{JA}	54°C/W		
Operating free-air temperature	-40℃ to 85℃		
Maximum Junction Temperature T _{JMAX}	125℃		
Storage Temperature Range T _{STG}	-65℃ to 150℃		
Lead Temperature (Soldering 10 Seconds)	260℃		
ESD Rating (2)			
HBM(human body model)	±8KV		
Latch-up			
Test Condition: JEDEC STANDARD NO.78D NOVEMBER 2011	+IT: 450mA -IT: -450mA		

note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

note2: The human body model is a 100pF capacitor discharged through a 1.5k Ω resistor into each pin. Test method: MIL-STD-883H Method 3015.8.

Jun 2012 V1.0

Test Condition: T_A =25 $^{\circ}$ C, R_L =8 Ω +33uH (Unless otherwise specified)

Para	ameter	Conditions		Min	Тур	Max	Units
V_{DD}	Power Supply			2.5		5.5	V
Iq	Quiescent current				10		mA
I _{SD}	Shutdown current	V _{DD} =3.6V, SHUTDOWN =0V			0.1		μА
V _{IH}	SHDN high-level input			1.2		V_{DD}	V
V _{IL}	SHDN low-level input			0		0.35	V
I _{IH}	SHDN high-level input current	SHDN , V _{DD} =5.5V , V _{IH} =5.8V				100	uA
I _{IL}	SHDN low-level input current	SHDN, V _{DD} =5.5V, V _{IH} =-0.3V				5	uA
T _{SD}	Thermal Protect level				160		$^{\circ}$
T _{SDH}	Thermal Hysteresis				40		$^{\circ}$
Charge	Pump						•
PVDD	Output Voltage	V _{DD} =3.3V to 5.5V, no lo	ad	5.8	6.3	7	V
F1	Switching Frequency	VDD=3V to 5.5V			600		kHz
T _{ST}	Soft-start time	No load,COUT=10uF			0.5		ms
Ι _L	PVDD short to GND current limit				300		mA
Class K							
V _{os}	Output offset voltage	V _{IN} =0V, no load			0	30	mV
Rini	Dia: Latametina adama	Mode1 and Mode2			30		kΩ
KIIII	Internal impedance	Mode3 and Mode4			5		N32
Fosc	Modulation Frequency	V _{DD} =2.5V to 5.5V			300		kHz
PSRR	Power supply rejection ratio	V _{DD} =4.2V, Vp-p_sin=200mV -	217Hz		-70		dB
			1kHz		-68		dB
T _{ON}	Start-up time				28		ms
THD+N	Total harmonic distortion plus	V _{DD} =4.2V, Po=1W, f=1kHz			0.2		%
	noise	V _{DD} =3.6V, Po=0.5W, f=1kHz			0.23		%
Po	D. Output naver	THD+N=10%, f=1kHz, V _{DD} =4.2V			2		W
10	Output power	THD+N=1%, f=1kHz, V _{DD} =4.2V	′		1.7		W
one-wire	oulse control						
T _H	SHDN high level hold time	V _{DD} =2.5V to 5.5V		0.75	2	10	us
TL	SHDN low level hold time	V _{DD} =2.5V to 5.5V		0.75	2	10	us
T _{OFF}	SHDN delay time	V _{DD} =2.5V to 5.5V				500	us
NCN							
T _{AT}	Attack time	fsin=1kHz			40		ms
T_RL	Release time				1.2		s
A_{MAX}	Maximum attenuation gain				-6		dB

Measurement System

AW8733A features switching output signal. As shown in Figure 4. A Low-Pass RC filter can be used to remove high switching frequency in output signal $_{\circ}$

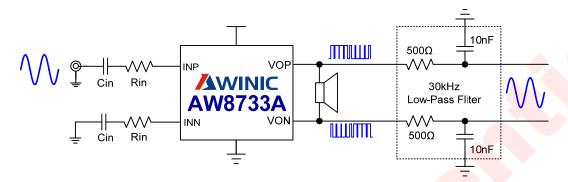
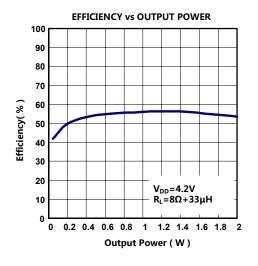
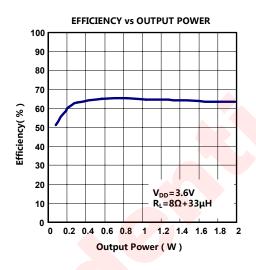
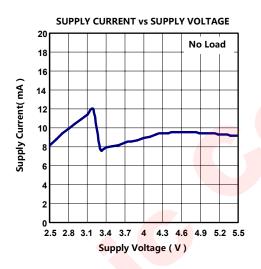
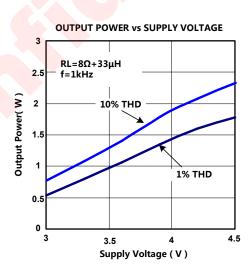


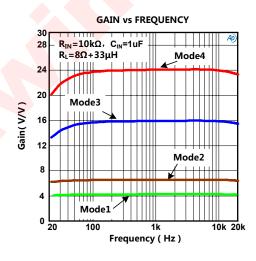
Figure 4 AW8733A measurement system

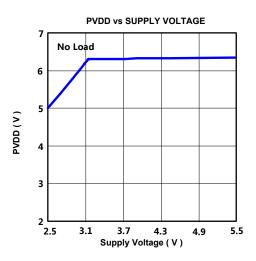

Table 1 shows recommended values of R_{filter} and $C_{\text{filter}}{}^{\circ}$

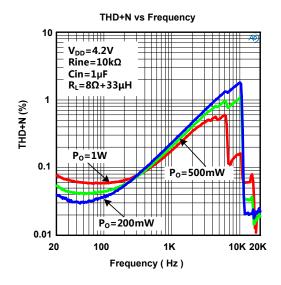

R _{filter}	C_{filter}	Low-pass cutoff frequency
500Ω	10nF	32kHz
1kΩ	4.7nF	34kHz

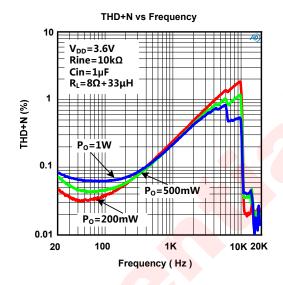

Table1 Typical RC Measurement Filter Values

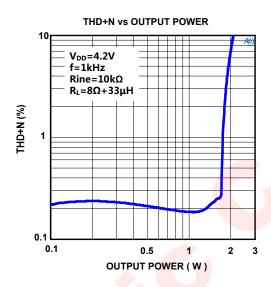



Typical Operating Characteristics

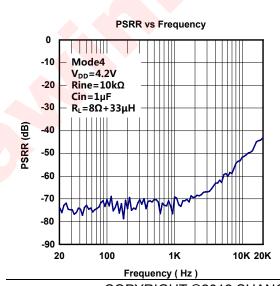


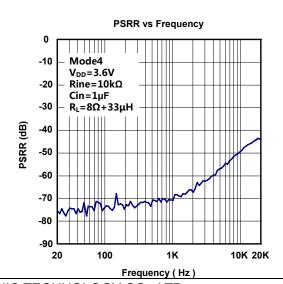


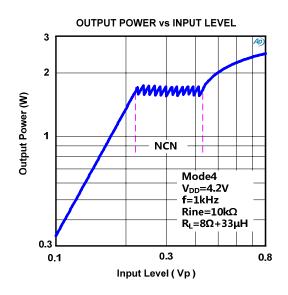


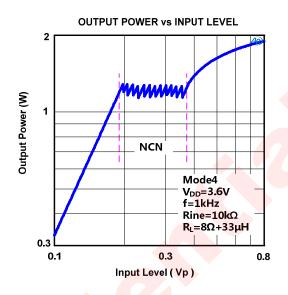


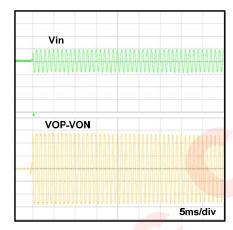


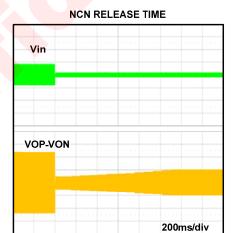


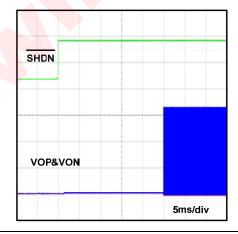


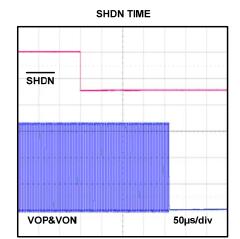











NCN ATTACK TIME

STARTUP TIME

Block Dlagram

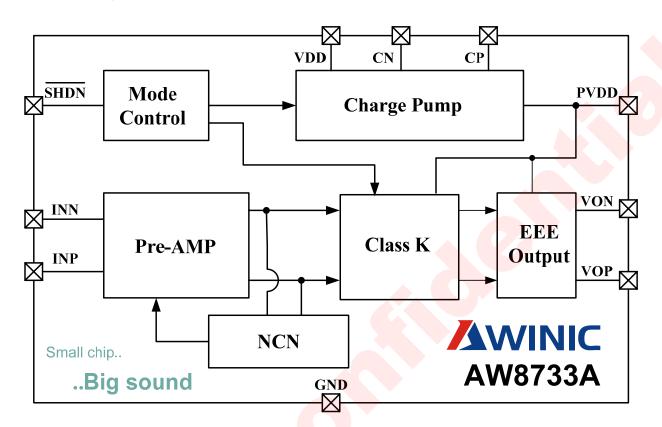


Figure 5 Functional Block Diagram of AW8733A

Operation

The AW8733A is a powerful Class-K audio amplifier that features RNS (RF-TDD Noise Suppression), NCN (Non-Crack-Noise) and EEE (Enhanced Emission Elimination).

The AW8733A features the RNS function which greatly reduces RF-TDD Noise.

The AW8733A features a built-in charge pump converter generates a 6.3V supply voltage. This provides a louder audio output than a stand-alone amplifier directly connected to the battery. The AW8733A features 2W output power (10% THD+N) into 8Ω load at 4.2V battery voltage.

The AW8733A features the NCN function, which adjusts the system gain automatically while detecting the "Crack" distortion of output signal, protects the speaker from damage at high power levels and brings the most comfortable listening experience to the customers.

The AW8733A is available in a small 3mm×3mm 20-Pin TQFN Package. It is specified over the extended -40℃ to +85℃ temperature range.

One-wire pulse control

AW8733A select each mode by one-wire pulse control, as shown in figure 6. When SHDN pin pull high form shutdown mode, there is one rising edge, AW8733A start to work and set Gain=12dB. When high-low-high signal set to \$\overline{SHDN}\$ pin, there are two rising edges, AW8733A open NCN function and set Gain=16dB. When there are three rising edges, AW8733A close NCN function and set Gain=24dB. When there are four rising edges, AW8733A open NCN function and set Gain=27.5dB.

As shown in figure 6, when SHDN pull down above 500us, AW8733A will enter shutdown mode.

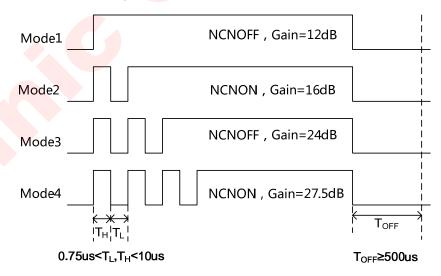


Figure 6 One-Wire pulse control

RNS (RF TDD Noise Suppression)

GSM radios transmit using time-division multiple access with 217Hz intervals. The result is an RF signal with strong amplitude modulation at 217Hz and its harmonics that is easily demodulated by audio amplifiers.

In RF applications, improvements to both layout and component selection decrease the AW8733A's susceptibility to RF noise and prevent RF signals from being demodulated into audible noise. Minimizing the trace lengths prevents them from functioning as antennas and coupling RF signals into the AW8733A. Additional RF immunity can also be obtained from relying on the self-resonant frequency of capacitors as it exhibits the frequency response similar to a notch filter. Depending on the manufacturer, 10pF to 20pF capacitors typically exhibit self resonance at RF frequencies. These capacitors, when placed at the input pins, can effectively shunt the RF noise at the inputs of the AW8733A. For these capacitors to be effective, they must have a low-impedance, low-inductance path to the ground plane.

Some RF energy will couple onto audio traces regardless of the effort to prevent this phenomenon from occurring, form audible TDD Noise. The AW8733A features a unique RNS technology, which effectively reduces RF energy, attenuates the RF TDD-noise, an acceptable audible level to the customer.

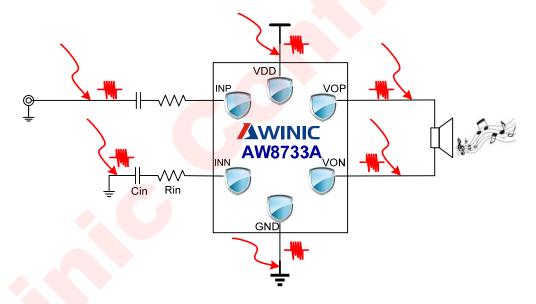


Figure 7 RF Energy Coupling Diagram

NCN

In audio application, output signal will be undesirable distortion caused by too large input and power supply voltage down with battery, and clipped output signal may cause permanent damage to the speaker. The AW8733A features unique non-crack-noise (NCN) Function, which adjusts system gain automatically to generate desired output by detecting the "Crack" distortion of output signal, protects the speaker from damage at high power levels and brings the most comfortable listening experience to the customers.

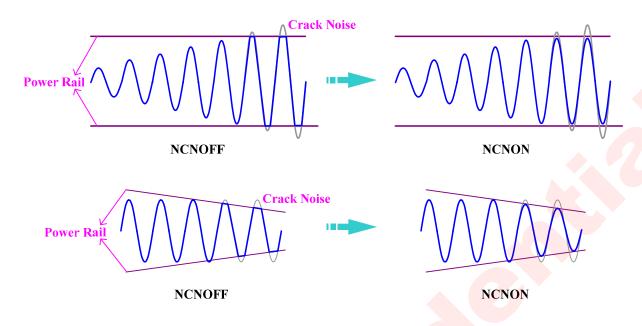


Figure 8 NCN Function Diagram

Attack time

Attack time is the time it takes for the gain to be reduced by 6dB once the audio signal exceeds the NCN threshold. Fast attack times allow the NCN to react quickly and prevent transients such as symbol crashes from being distorted. However, fast attack times can lead to volume pumping, where the gain reduction and release becomes noticeable, as the NCN cycles quickly. Slower attack times cause the NCN to ignore the fast transients, and instead act upon longer, louder passages. Selecting an attack time that is too slow can lead to increased distortion in the case of the No Clip function. Attack time is set 40ms in AW8733A.

Release time

Release time is the time it takes for the gain to return from 6dB to its normal level once the audio signal returns below the NCN threshold. A fast release time allows the NCN to react quickly to transients, preserving the original dynamics of the audio source. However, similar to a fast attack time, a fast release time contributes to volume pumping. A slow release time reduces the effect of volume pumping. Release time is set 1.2s in AW8733A.

Filter-Free Modulation Scheme

The AW8733A features a filter-free PWM architecture that reduces the LC filter of the traditional Class-D amplifier, increasing efficiency, reducing board area consumption and system cost.

EEE

The AW8733A features a unique Enhanced Emission Elimination (EEE) technology, that controls fast transition on the output, greatly reduces EMI over the full bandwidth.

Pop-Click Suppression

The AW8733A features unique timing control circuit, that comprehensively suppresses pop-click noise, eliminates audible transients on shutdown, wakeup, and power-up/down.

Protection Function

When a short-circuit occurs between VOP/VON pin and VDD/GND or VOP and VON, the over-current circuit shutdown the device, preventing the device from being damaged. When the condition is removed, the AW8733A reactivate itself. When the junction temperature is high, the over-temperature circuit shutdown the device. The circuit switches back to normal operation when the temperature decreases to safe levels.

Applications Information

External Input Resistor-Rine (Gain setting)

The AW8733A is a differential audio amplifier. The IC integrates two internal input resistors, which $30k\Omega$ in mode1 and mode2, $5k\Omega$ in mode3 and mode4. Take external input resistor R_{ine} =10 $k\Omega$ for an example, gain setting as follows:

Mode1:
$$A_V = \frac{160k\Omega}{R_{ine} + R_{ini}} = \frac{160k\Omega}{10k\Omega + 30k\Omega} = 4V/V$$

Mode2:
$$A_V = \frac{240k\Omega}{R_{ine} + R_{ini}} = \frac{240k\Omega}{10k\Omega + 30k\Omega} = 6V/V$$

$$\mbox{Mode3:} \ \ \mbox{A_V} = \frac{240 k \Omega}{\mbox{R_{ine}} + \mbox{R_{ini}}} = \frac{240 k \Omega}{10 k \Omega + 5 k \Omega} = 16 \mbox{V/V} \label{eq:Mode3:}$$

$$\mbox{Mode4:} \ \ \mbox{A_V} = \frac{360 \mbox{k} \Omega}{\mbox{R_{ine}} + \mbox{R_{ini}}} = \frac{360 \mbox{k} \Omega}{10 \mbox{k} \Omega + 5 \mbox{k} \Omega} = 24 \mbox{V/V}$$

Input Capacitor-C_{in} (input high-pass cutoff frequency)

The input coupling capacitor blocks the DC voltage at the amplifier input terminal. The input capacitors and input resistors form a high-pass filter with the corner frequency:

$$f_{H}(-3dB) = \frac{1}{2*\pi*R_{intotal}*C_{in}}(Hz)$$

Setting the high-pass filter point high can block the 217Hz GSM noise coupled to inputs. Better matching of the input capacitors improves performance of the circuit and also helps to suppress pop-click noise.

Take typical application in Figure 2 as an example:

Mode1, Mode2:

$$f_H(-3dB) = \frac{1}{2 * \pi * R_{intotal} * C_{in}} (Hz) = \frac{1}{2 * \pi * 40k\Omega * 22nF} (Hz) = 182Hz$$

Mode3, Mode4:

$$f_{H}(-3dB) = \frac{1}{2*\pi*R_{intotal}*C_{in}}(Hz) = \frac{1}{2*\pi*15k\Omega*22nF}(Hz) = 485Hz$$

Supply Decoupling Capacitor (C_s)

The AW8733A is a high-performance audio amplifier that requires adequate power supply decoupling. Place a low equivalent-series-resistance (ESR) ceramic capacitor, typically 0.1µF. This choice of capacitor and placement helps with higher frequency transients, spikes, or digital hash on the line. Additionally, placing this decoupling capacitor close to the AW8733A is important, as any parasitic

resistance or inductance between the device and the capacitor causes efficiency loss. In addition to the $0.1\mu F$ ceramic capacitor, place a $10\mu F$ capacitor on the VBAT supply trace. This larger capacitor acts as a charge reservoir, providing energy faster than the board supply, thus helping to prevent any droop in the supply voltage.

Flying Capacitor (C_F)

The value of the flying capacitor (C_F) affects the load regulation and output resistance of the charge pump. A C_F value that is too small degrades the device's ability to provide sufficient current drive. Increasing the value of C_F improves load regulation and reduces the charge pump output resistance to an extent. A $4.7\mu F$ capacitor is recommended.

Hold Capacitor (C_H)

The output capacitor value and ESR directly affect the ripple at PVDD. Increasing C_H reduces output ripple. Likewise, decreasing the ESR of C_H reduces both ripple and output resistance. A $10\mu F@10V$ capacitor is recommended.

Optional Ferrite Bead Filter

The AW8733A passed FCC and CE radiated emissions with no ferrite chip beads and capacitors. Use ferrite chip beads and capacitors if device near the EMI sensitive circuits and/or there are long leads from amplifier to speaker, placed as close as possible to the output pin.

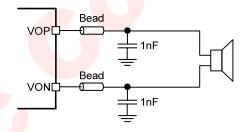
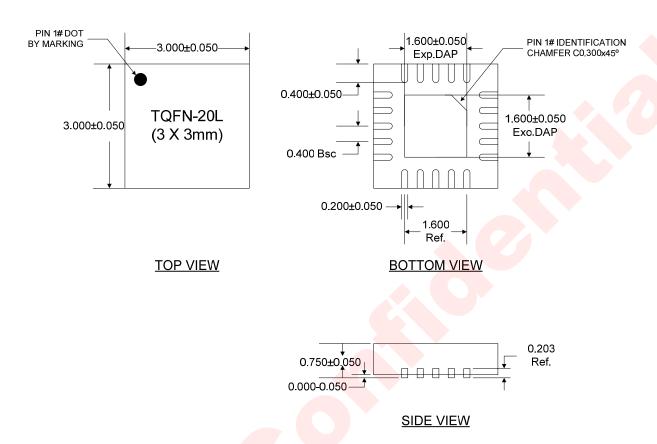



Figure 9 Ferrite Chip Bead and capacitor

Package Description

AWINIC Technology cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AWINIC Technologies product. No intellectual property or circuit patent licenses are implied. AWINIC Technology reserves the right to change the circuitry and specifications without notice at any time.