SK 45 STA

SEMITOP® 3

Six Separated Thyristors Module

SK 45 STA

Preliminary Data

Features

- · Compact design
- · One screw mounting
- · Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Glass passivated thyristor chipsUp to 1600 V reverse voltage

Typical Applications

- Soft starters
- Light control (studios, theatres...)
- Temperature control

V _{RSM} V	V _{RRM} , V _{DRM} V	I _{TRMS} = 41 A (T _s = 75 °C)
900	800	SK 45 STA 08
1300	1200	SK 45 STA 12
1700	1600	SK 45 STA 16

Characteristics $T_h = 25 ^{\circ}\text{C}$, unless otherwise specified					
Symbol	Conditions	Values	Units		
I _{rms} (W1C)	sin. 180°; T _S = 100°C	33	Α		
I _{rms} (W1C)	sin. 180°; T _S = 85°C	47	Α		
			Α		
I _{TSM} /I _{FSM}	T _{vi} = 25 (125) °C; 10 ms	450 (380)	Α		
I²t	T _{vj} = 25 (125) °C; 8,3 10 ms ms	1000 (720)	A²s		
T _{stg}		- 40 + 125	°C		
T _{solder}	terminals, 10 s	260	°C		
Thyristor					
(dv/dt) _{cr}	T _{vi} = 125 °C	1000	V/µs		
(di/dt) _{cr}	T _{vj} = 125 °C; f = 50 60 Hz	50	A/µs		
t_q	$T_{vj} = 125 ^{\circ}\text{C}; \text{ typ.}$	80	μs		
I _H	T_{vj} = 25 °C; typ. / max.	80 / 150	mA		
I_{L}	$T_{vj} = 25 \text{ °C}; R_G = 33 \Omega; \text{ typ. / max.}$	150 / 300	mA		
V _T	$T_{vi} = 25 ^{\circ}\text{C}; (I_T = 75 \text{A}); \text{max}.$	1,9	V		
$V_{T(TO)}$	T _{vi} = 125 °C	max. 1	V		
r _T	T _{vi} = 125 °C	max. 10	mΩ		
I _{DD} ; I _{RD}	$T_{vj}^{'j}$ = 125 °C; $V_{DD} = V_{DRM}$; $V_{RD} = V_{RRM}$	max. 10	mA		
R _{th(j-s)}	, =====================================	1,2	K/W		
T _{vj}		- 40 + 125	°C		
V_{GT}	$T_{vi} = 25 ^{\circ}\text{C}; \text{d.c.}$	3	V		
I _{GT}	$T_{vi}^{3} = 25 ^{\circ}\text{C}; \text{d.c.}$	100	mA		
V_{GD}	T_{vi}^{3} = 125 °C; d.c.	0,25	V		
I_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	3	mA		
Diode					
V_{F}	$T_{vj} = {^{\circ}C}; (I_F = A); max.$		V		
$V_{(TO)}$	$T_{vi} = {^{\circ}C}$		V		
r _T	$T_{vj} = {^{\circ}C}$		mΩ		
I_{RD}	$T_{vj} = {^{\circ}C}; V_{RD} = V_{RRM}$		mA		
R _{th(j-s)}			K/W		
T_{vj}			°C		
Mechanical data					
V_{isol}	a.c. 50 Hz; r.m.s.; 1 min / 1s	2500 (3000)	V		
M ₁	mounting torque	2,5	Nm		
w		30	g		
Case	SEMITOP® 3	T56			

SK 45 STA

SK 45 STA

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.