Snap－action switches

S870，S970 Series
Snap－action switches
Positive opening operation
Self－cleaning contacts
Catalogue D70．en
\square

Ordering code Series $5870 / 5970$

Snap－action switches S870／S970 Series

Single break SPDT switches with positive opening operation and wiping contacts

870／／5970 Series snap－action switches feature positive opening opera on，which guarantees that even contacts which have become welded Wing contacts proteted against dust humidity Wiping contacts protected against dust，humidity and contaminants ontacts are especially suited for switching low voltages and small cur－ rents．

A defined as well as repeatable switching action is possible thanks to the snap mechanism whose switching speed is virtually independent
of the actuation speed．That is why snap－action switches are preferred in applications with slow actuation speeds，where they are used，for instance，as motor switches，position switches，or gear limit switches．

Variants for extreme conditions：Ruggedized housing made from polyetherimide（PEI）．Designed for use in harsh ture，chemicals and impact．
ositive opening operation：Reliable breaking of the normally closed（NC）circuit even if the contacts have become welded together，in compliance with IEC 60947－5－1，Annex K．

Single break contacts：Changeover switch，also available as NC or NO versions with leads or cable connection． as NC or NO versí
Compact design．

Rating：Degrees of protection against dust，humidity contaminants，or access to hazardous parts to IEC 60529： Contacts：IP40，IP60 or IP67／Terminals：IP00，IP20 or IP67

Self－cleaning contacts：Continuous low contact resist－ Self－cleaning contacts：Continuous low contact resist－
ance ensures high contact reliability over the entire design life of the switch．

Contact material：Silver or gold

Design and function

5970
 Better

Resistance to

－temperature
－chemicals
－impact

Variants for extreme conditions
Schaltbau has developed special variants for use in harsh environments．The S970 Series has a ruggedized housing made from polyetherimide（PEI）that stands for improved resistance to：
－temperatures from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
－chemicals（e．g．acids and alkalis）
－impact（PEI 50% more resistant than PC）
The amber，transparent switches are ideally suited for ap－ plications where impact forces are high and／or frequent as well as for use in products that are exposed to strong chemicals or extremes of temperature．
The S9xx Series switches have the same design，dimen－ sions and technical features as the switches of the standard S8xx series，allowing for easy replacement and upgrade from a standard switch without additional implementation effort．

Application
S970 switches are typically used with systems and Somp switches are typically used with systems and
components that require a high degree of safety and reliability，such as
－Limit switch
－Limstems shes for machine，door and plant control systems
－Crane consoles
－Switching elements for automation
－Safety limit switches for control systems and plant controls

Specifications

	S870／S970 Series IP Rating：Contacts／Terminals	Standard	P40／1P00＋P40／1P20	｜P60／1P00	｜P67／P67
	Contact configuration	IEC 60947	1x SPDT，Form C，single break contacts， 3 terminals／ $1 \times$ SPST－NC，Form B single break contacts， 2 terminals／ 1x SPST－NO，Form A，single break contacts， 2 terminals		
	Conventional thern	IEC 60947	$10 \mathrm{Aat} \mathrm{T}=85^{\circ} \mathrm{C}$		
	Conventional thermal current th $_{\text {th }}$	UL 508	$10 \mathrm{AatT}=85^{\circ} \mathrm{C}$		
	Rated insulation voltage U_{i}	IEC 60947	250 V		
		UL508	300 V		
	Pollution degree	IEC 60947	PD3		
		UL 508	S870：PD3／S970：PD2		
	Rated impulse withstand voltage $U_{i m p}$	IEC 60947	4 kV		
	Overvoltage category	IEC 60947	OV3		
		IEC 60947	AC－15：230VAC 1.5 A A DC－13：60		C／ 0.5 A
	for silver contacts ${ }^{\text {1］}}$	UL $508{ }^{*}$	AC240V／1．5 A DC60V		
	Contact gap，typical	IEC 60947	$1 \times 1.2 \mathrm{~mm}$		
	Contact force，typical	IEC 60947	0.3 N		
	Contact resistance，typical， no leads connected	IEC 60947	$100 \mathrm{~m} \Omega$		
	Positive opening force ${ }^{2}$	IEC 60947	20 N		
	Actuator travel for positive opening operation	IEC 60947	see page 6，7		
	Maximum actuator trave ${ }^{1} 2$	IEC 60947	3.0 mm		
	Actuation speed	IEC 60947	$1.0 \mathrm{~m} / \mathrm{s}$ max． $0.1 \mathrm{~mm} / \mathrm{s} \mathrm{min}$		
	Vibration resistance， $10 \ldots 500 \mathrm{~Hz}$ all directions（without aux． actuator at $10 \mu \mathrm{~s}$ max．opening time）	IEC 60068－2－6	50 g		
	Shock resistance （without aux．actuator at $10 \mu \mathrm{~s}$ max． opening time）	IEC 60068－2－27	70 g ，half sinus		
	Short－circuit protection for silver contacts ${ }^{* 1}$	IEC 60269－2	10 AgG		
	Switching frequency，max．	IEC 60947	300 operations／minute		
	Actuation force ${ }^{2}$	IEC 60947	2.4 Nmax ．	3.0 Nmax ．	3．0 Nmax ．
	Release force ${ }^{2}$	IEC 60947	0.5 Nmin ．	0.5 Nmin ．	0.5 Nmin ．
	Contacts	IEC 60529	1P40	IP60	IP67
	Terminals Screw－type	${ }^{\text {IEC } 60529}$	1 P 20	－－	－－
			PP00	IPOO	
	PCB／Solder lugs	IEC 60529 IEC 60529	1 P 00	1 P 00	IP67
	Mechanical endurance	IEC 60947	10 million cycles，min． 5 million cycles，min．		5 million cycles，min．
	Ambient temperature Flat tabs／PCB／Solder lugs 5870				
	5970	IEC 60947	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C} \ldots+150^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}^{* 5}$ $-55^{\circ} \mathrm{C}+150^{\circ} \mathrm{C}$ 5	－－
	Leads＂4 S870／5970 Cable S870／5970				$-20^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$＂ $-30^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$＂
	Material Contacts Terminals Seal＊6 Housing，upper part Housing，lower part Cable／Leads＊4		silver（Ag90Ni10）or gold（AuNi3Ag26） brass，silver or gold plated S870：silicon，blue／S970：silicon，red S870：PC，light green，transparent／S970：PEI，amber，transparent S870：PC，black／S970：PEI，black Insulation：PVC／leads：AWG 18		
		－－			
		\cdots			
		－－			
	Mounting position Weight，no leads connected	－－	any		
（1）Notes：		－－	approx． 7 g ，no aux．actuator／／cable／leads		
Data valid for new switches under laboratory conditions and at room temperature，	Approvals	－－			

[^0]Dimension and circuit diagrams

－Dimensions S870 W2D1 a／S970 W2D1 a
Circuit diagram
SPDT：
$\mathbf{1 —}^{4}$

（O）

Specifications are subject to alteration without prior notice／Dimensions in $m m$

S870W1D1a／S970W1D1a
S870 W1D1a SPDT
$\begin{array}{ll}5870 \text { W } 1 \text { Dla } & \begin{array}{c}\text { Contacts } 1 \text { P40 } \\ \text { Terminal } 1 \text { P00 }\end{array}\end{array}$
S870 WiDla Flat tabs 6．300．8
S870 W1D 1 a antact material silver
S870 W1D1目 Push button（standard）
S970 W1D1a SPDT
5970W1DIa Contacts IP40
S970W1Dla Flat tabs $63 \times 0.8 \mathrm{~m}$
$\begin{array}{ll}5970 \text { W1D1a } & \text { Flat tabs } 6.3 \times 0.8 \mathrm{~mm} \\ \text { S970W1D［1］} & \text { Contact material siver }\end{array}$ S970w1D1 Push button（standard）

S870 W2D1a／S970 W2D1a

S870W2D1a SPDT $\begin{array}{ll}\text { S870 W2DID } & \begin{array}{c}\text { Contacts IP60 } \\ \text { Terminal } 1 \text { P00 }\end{array}\end{array}$ S870W2D1a Flat tabs $6.3 \times 0.8 \mathrm{~mm}$ S870 W2D 1a Contact material siver	5870 W2D1国 Push button（standard）
S970 W20	S970 W2D1a SPD

5970 W2D1a Contact IP60
5970 W2D1a Flattabs $6.3 \times 0.8 \mathrm{~m}$ S970 W2D 1 Ia Contact material silver S970 W2D1回 Push button（standard）

S870 W3L1a／S970 W3L S870 W3L1a SPD
 S80W3 Lia Contacts IP67
 S870W3L1
S870 W3L1／
Contact material silver

Push button（standard） | S870 W3L1 a |
| :--- |
| S970 Wush button（standard） |
| SPDT | $\begin{array}{ll}\text { S970 W3L1a } \\ \text { S970W／3L1a } & \text { Co }\end{array}$ 5970W3 3－1a $\begin{array}{ll}\text { Contacts IP67 } \\ \text { Terminals IP67 }\end{array}$ $\begin{array}{ll}\text { S970W3［LT1a } & \text { Cable，length } 500 \mathrm{~mm} \\ \text { S970 W3［ } \\ \text { ITa } & \text { Contact material silver }\end{array}$ S970W3L1这 Push button（standard）

－Push button（standard）Actuator style a

（－）－
－Plain lever，short Actuator style \mathbf{k}

－Plain lever，long Actuator style \mathbb{I}

－Plain lever，medium Actuator style \mathbf{m}

Actuator position	Push button（standard）a Dimension \times in mm
Free position	16.0 ± 0.1
Operating position	14.8 ± 0.2
Release position	15.1 ± 0.2
Total positive opening travel	13.3
Total travel position	13.0
Movement differential （between operating and release position）	$\begin{aligned} & 0.3 \\ & \text { (typical } \end{aligned}$

（1）Note：To ensure the proper working of the possitive opening operation it is necessary tod depress the plungerto the point of fotal positive 0 p
Howeverit must thot bepushed beyonod total travel position．
However，timust norbepushed
Data is valid fornewswitches．

Actuator position	$\begin{aligned} & \text { Plain lever } k \\ & \text { Dimension } \triangle \text { in } \mathrm{mm} \end{aligned}$
Lever length（1）	25.7
Free position	17.5 ± 0.2
Operating position	15.9 ± 0.3
Release position	16.2 ± 0.3
Total positive opening travel	13.7
Total travel position	13.4
Movement differential （between operating and release position）	0.3 （typical）

（1）Note：Toensur the proper working ofthe positive openingo operation itis

1．Note：Toensure the proper working ofthe positive opening operation it its necessary todepress the plungert to the point of total op ositive of
However，it must not be pushed beyond dotal travel position． Data is valid fornewswithes．

Actuator position	$\begin{aligned} & \text { Plain lever } \\ & \text { Dimension } X \text { in } \mathrm{mm} \end{aligned}$
Lever length（1）	34.9
Free position	19.0 ± 0.25
Operating position	16.7 ± 0.35
Release position	17.3 ± 0.35
Total positive opening travel	13.5
Total travel position	13.2
Movement differential （between operating and release position）	0.6 （typica）

（1）Note：Toensure the properworking of the positive opening operationitis
 However，it musts no bt be pushed deyond dotoal travel position．
Data is valid for new swithes．
Data is valid for new switches．
－Roller lever，long Actuator style \mathbf{r}

－Roller lever，short Actuator style t

－Simulated roller lever，medium Actuator style u

－Simulated roller lever，long Actuator style \mathbf{v}

（1）Note：Toensure the proper working of the positive opening operation it is necessary todepresesthe plunger to the point of ftotal positive opening travel．
However，it itst not b be pushed beyond dotal travel position． However it must not bepushed
Data is valid fornew switches．

Actuator position	$\begin{gathered} \text { Roller lever [t } \\ \text { Dimension } X \text { in } \mathrm{mm} \end{gathered}$
Lever length（1）	19.1
Free position	21.9 ± 0.3
Operating position	20.7 ± 0.4
Release position	21.0 ± 0.4
Total positive opening travel	19.3
Total travel position	19.0
Movement differential （between operating and release position）	$\text { co. } \text { typical }$

（1） $\begin{aligned} & \left.\text { Note：} \begin{array}{l}\text { Toensure the proper working of the positive opening operation it is } \\ \text { necessary to deperes the plungert to the pointo fotoal positive opening travel．}\end{array}\right]\end{aligned}$
 Howeverit t tust not be pushed beyond total travel position
Data is valid fornews swithes
Data is valid for rew switches．

Actuator position	Simulated roller lever u Dimension X in mm
Lever length（1）	22.6
Free position	22.4 ± 0.3
Operating position	21.1 ± 0.4
Release position	21.4 ± 0.4
Total positive opening travel	19.3
Total travel position	19.0
Movement differential （between operating and release position）	$\begin{gathered} 0.3 \\ (t y p i c a l) \end{gathered}$

（1） $\begin{aligned} & \text { Note：To ensuru the proper working of the positive opening operation it is } \\ & \text { necessary to deperess the p p ungert }\end{aligned}$ necessary to depress the plungert the popint of fotal Positive
However it mustront be pusshed beyond total travel Position However，it must not bepushec
Data is valid fornew switches．

Actuator position	Simulated roller lever v Dimension $\mathbb{C l}$ inm
Lever length（1）	27.6
Free position	23.3 ± 0.3
Operating position	21.5 ± 0.4
Release position	22.0 ± 0.4
Total positive opening travel	19.2
Total travel position	18.8
Movement differential between operating and release position）	0.3 （typical）

 necessary tod depresesthe plunger to the eooint of total positive
Howeve，it must not be pushed beyond total travel position． However，it must not tepurshe
Data is valid for new swithes．

Terminals（continued）
Series 5870／S970
－PCB terminals，straight terminal style \mp

－©
－Solder lugs，straight terminal style \mathbf{G}

－Cable，on side opposite actuator terminal style \square

（i）Note：
Hand soldering：
－Soldering appoartuss：Hand－held soldering ion
－Solder：Fluxfilled sodder wire ecadtree
－Temperatureduration： 400° C； 5 s max．${ }^{*}$
Selective soldering：
－Soldering apparatus：Selective soldering station
－Temperaturedduration： $300^{\circ} \mathrm{C}, 25$ s $; 3$ mm wave distance
Fuxtime 1s
Wave soldering：
Wave soldering：
－Solderingogpoaratus：Wave solderingstation， 1 wave
（Worthmenn wave）
－Solder：Leadries eolder for selective and wave soldering
－Temperaturededuration： $260^{c} ; 5 ; 5 ; 66$ mm wave distance conveyor 1 sped $0.8 \mathrm{~m} / \mathrm{min}$
Preheating approx． 113 sat $110 . . .145^{\circ} \mathrm{C}$（typical）

PCB；1．6mm；through－contacted
（i）Note：
Hand soldering：
－Soldering apparatus：Hand－held soldering iron
－Temperaturueduraration：400 Coc； 5 smax，pre－tinned lea

（4）\leftarrow Lead AWG18／blue $\stackrel{2}{2} \leftarrow$ Lead AWG18／grey
－Flat tabs，straight terminal style

（D）－

Ganging（side mount）
through the two transversal holes in the body of the switch by means of Tightening torque 0.7 Nm max
Tightening torque 0.7 Nm max．
－Alternatively，DUO－Clips or retaining rings can be used．

－Holes for PCB terminals，straight

$5870 / 5970$
PCB terminals，straight

2xM3 collar screw／threaded bolt including washer

Mounting Mounting plates
Series S870／S970
Fr mounting the switches on uninsulated surfaces use mounting plates with the following features：
Suitable for side mounting of the switch on the left and on the right
－Material：polyamide PA66，flammability rating UL 94V－0

Long mounting plate，ordering code：MP g

Short mounting plate，ordering code：MP k

$4.2=$

Mounting When to use a roller lever

Snap－action switches are designed for actuation with and without a roller lever．
A roller lever，however，is required if the direction of actuation deviates more than $\pm 15^{\circ}$ from the plunger axis．

Mounting instructions：

－Snap－action switches should be mounted by qualified professional staff only．
－Observe the required clearance and creepage distances．This is also applicable for connected wires．
－It is necessary to use insulating plates when ganging or mounting switches on uninsulated surfaces．
－The switches can be mounted in any orientation
－When mounting the switches make sure to use 2 fastening elements （e．g．screws）．
－Only use adequate fastening elements such as cylinder head or collar screws and DUO－clips，including washers．The value for maximum tight ening torque must not be exceeded．
－The actuator should not be pre－tensioned when in the free position． When actuated the actuator should travel beyond the operating posi－ tion for at least 50% of the predefined overtravel，all the way to the tota travel position．
－Avoid tilting the screw when mounting to prevent mechanical tension on the housing．
－To ensure the proper function of the positive opening operation it is necessary to depress the plunger to the total travel position．
－To prevent mechanical destruction of the switch，make sure that actu－ ation of the switch does not exceed the specified total travel position． Avoid using the switch as a mechanical end stop．
－High－impact actuation of the switch can have a negative effect on its mechanical life．
－When securing stripped wire ends in the terminal clamp，make sure the wire insulation is flush with the clamp．
－Prevent a transfer of forces to the switch terminals，and ensure that connected leads have a functioning strain relief．

Cam disk，diameter 50 mm
－
Cam disk，diameter 20 mm
\square
Linear cam

Standards

－IEC 60947－1：Low－voltage switchgear and controlgea Part 1：General rules
－IEC 60947－5－1，Annex K：Special requirements for control switches with direct opening action
－IEC 60529：Industrial control equipment
－UL 94V－0：Flammability Standard
－DIN 41636－6：Sensitive switches for communication technology dimensions，type A
－DIN EN ISO 13849－1：Safety of machinery－Safety－related parts of control systems－Part 1：General principles for design
－IEC 60068－2－6：Environmental testing－Part 2－6：Tests Test Fc：Vibration（sinusoidal）
－IEC 60068－2－27：Environmental testing－Part 2－27：Tests－ Test Ea and guidance：Shock

Non－permissible environmental conditions

－Cleaning agents，adhesives，solvents，or screw－retaining varnish must be compatible with polycarbonate（S870）and polyetherimide（S970） respectively．Never use chemicals not compatible with polycarbonate for 5870 Series switches or not compatible with polyetherimide for $\$ 970$ Series snap－action switches．
－Using such chemicals can result in cracks，deformation，breakage and dissolution
switch．
Switches sealed to IP 67 are immersion protected．That means there is no ingress of water in a harmful quantity when a new switch（which is not operated）is immersed in water（ 1 m depth）for 30 minutes．This degree of protection cannot be warranted，however，when chemicals not compatible with polyetherimide for 5970 Series switches

Safety instructions

Series $\$ 870 / 5970$
－In case of moisture of any kind or impact of aggressive substances， chemicals，solvents or acids appropriate protective measures must be taken by the user in accordance with IEC 60364－4－41：2005，modified （Low－voltage electrical installations－Part 4－41：Protection for safety－ Protection against electric shock）．One such measure is the limitation of the voltage range．
－Be sure to make regular visual inspections．
－Improper handling of the switch，e．g．when hitting the floor with some impact，can result in breakage，visible cracks and deformation．
－The switch suitability has to be confirmed by the customer for the specific application，and under application conditions．
－For applications with both a high ambient temperature of $>40^{\circ} \mathrm{C}$ and high $I_{\text {th }}$ current，a correction factor i．a．w．DIN EN 60204－1 Tab． 6 and D．D． 1 must be applied for the wire and current．
（！）Defective parts must be replaced immediately！

For a detailed list of all safety instructions see here： $\stackrel{\text { For }}{\theta}$

IRIS．

Certification
The production facilities of Schaltbau GmbH have been IRIS certified since 2008.
 our website．

Electrical Components and Systems for
 Railway Engineering and Industrial Applications

Connectors

－Connectors manufactured to industry standards
－Connectors to suit the special requirements of communications engineering（MIL connectors）
－Charging connectors for battery－powered machines and systems
－Connectors for railway engineering， including UIC connectors
－Special connectors to suit customer requirements

Snap－action switches

－Snap－action switches with positive opening operation
－Snap－action switches with self－cleaning contacts
－Enabling switches
－Special switches to suit customer requirements

Contactors

－Single and multi－pole DC contactors
－High－voltage AC／DC contactors
－Contactors for battery powered vehicles and power supplies
－Contactors for railway applications
－Terminal bolts and fuse holders
－DC emergency disconnect switches
－Special contactors to suit customer requirements
－Equipment for driver＇s cab
－Equipment for passenger use
－High－voltage switchgear
－High－voltage heaters
－High－voltage roof equipment
－Equipment for electric brakes
－Design and engineering of train electrics to customer requirements

[^0]:

