

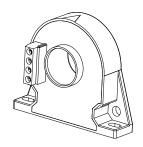
Current Transducer LT 58-S7/SP1

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic isolation between the primary circuit and the secondary circuit.

Electrical data

I _{PN}	Primary nominal current rms		50		Α
I _{PM}	Primary current, measuring	ng range	0 ± 70		Α
\mathbf{R}_{M}	Measuring resistance		\mathbf{R}_{Mmin}	R _{M max}	
	with ± 12 V	$@ \pm 50 A_{max}$	0	140	Ω
		@ ± 70 A _{max}	0	70	Ω
	with ± 15 V	@ ± 50 A _{max}	0	200	Ω
		@ ± 70 A _{max}	0	110	Ω
I _{SN}	Secondary nominal curre		50		mΑ
\mathbf{K}_{N}	Conversion ratio		1:10	00	
$\mathbf{V}_{\mathtt{C}}$	Supply voltage (± 5 %)		± 12 .	. 15	V
I _c	Current consumption		20 (@	±15V)+ I _S	mA

Accuracy - Dynamic performance data


\mathbf{X}_{G} $\mathbf{\mathcal{E}}_{L}$	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity error	± 0.8 < 0.2		% %
I _{OE}	Electrical offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Magnetic offset current $^{1)}$ @ $\mathbf{I}_{\rm p}$ = 0, and specified $\mathbf{R}_{\rm M}$, after an overload of 3 x $\mathbf{I}_{\rm pN}$	Тур	Max ± 0.20 ± 0.10	mA mA
I _{OT} t _{ra} t _r di/dt BW	Temperature variation of \mathbf{I}_{o} - 10°C + 70°C Reaction time to 10 % of \mathbf{I}_{PN} step Response time ²⁾ to 90 % of \mathbf{I}_{PN} step di/dt accurately followed Frequency bandwidth (- 3 dB)	± 0.35 < 500 < 1 > 100 DC 1	•	mA ns µs A/µs kHz

General data

T _A T _S	Ambient operating temperature Ambient storage temperature	- 10 + 70 - 25 + 80	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	11	Ω
m	Mass	68	g
	Standard	EN 50178: 1997	

- 1) Result of the coercive field of the magnetic circuit
- 2) With a di/dt of 100 A/µs.

50 A

Features

- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Special feature

· Secondary connection on JTB450-00.

Advantages

- Excellent accuracy
- Very good linearity
- · Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- · High immunity to external interference
- · Current overload capability.

Applications

- · AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies
- Switched Mode Power Supplies (SMPS)
- · Power supplies for welding applications.

Application Domain

Industrial.

Current Transducer LT 58-S7/SP1

Isolation characteristics			
$\mathbf{V}_{_{\mathrm{d}}}$	Rms voltage for AC insulation test ¹⁾ , 50 Hz, 1 min	3.52	kV
$\hat{\mathbf{V}}_{w}$	Impulse withstand voltage 1.2/50 μs	6.5	kV
		Min	
dCp	Creepage distance 2)	10	mm
dCI	Clearance 2)	6	mm
CTI	Comparative Tracking Index (group IIIa)	275	

Notes:

- 1) Between primary and secondary
- ²⁾ On housing.

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
dCp, dCl, $\hat{\mathbf{V}}_{_{\mathrm{W}}}$	Rated insulation voltage	Nominal voltage
Basic insulation	600 V	600 V
Reinforced insulation	300 V	300 V

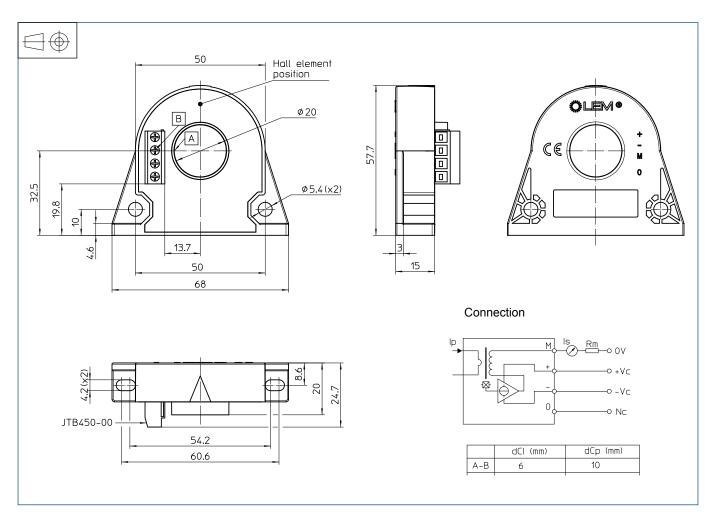
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LT 58-S7/SP1 (in mm)

Mechanical characteristics

General tolerance

Transducer fastening

Recommended fastening torque 1.5 Nm (± 10 %) Or

Recommended fastening torque 0.75 Nm (± 10 %)

Primary through-hole Connection of secondary ± 0.5 mm

2 holes Ø 5.4 mm

2 M5 steel screws

2 notches 4.2 mm

2 M4 steel screws

Ø 20 mm

Socket JTB450-00

(JITE, Shenzhen)

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.