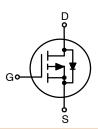


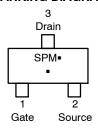
P-Channel Enhancement Mode Field-Effect Transistor


BSS84

General Description

This P-channel enhancement-mode field-effect transistor is produced using **onsemi's** proprietary, high cell density, DMOS technology. This very high density process minimizes on-state resistance and to provide rugged and reliable performance and fast switching. The BSS84 can be used, with a minimum of effort, in most applications requiring up to 0.13 A DC and can deliver current up to 0.52 A. This product is particularly suited to low-voltage applications requiring a low-current high-side switch.

Features


- $-0.13 \text{ A}, -50 \text{ V}, R_{DS(on)} = 10 \Omega \text{ at } V_{GS} = -5 \text{ V}$
- Voltage-Controlled P-Channel Small-Signal Switch
- High-Density Cell Design for Low R_{DS(on)}
- High Saturation Current
- This Device is Pb-Free and Halogen Free

SOT-23-3 CASE 318-08

MARKING DIAGRAM

SP = Specific Device Code

M = Date Code*

= Pb-Free Package(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
BSS84,	SOT-23-3	3000 /
BSS84-G	(Pb-Free)	Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

BSS84

ABSOLUTE MAXIMUM RATINGS T_A = $25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Ratings	Unit
V_{DSS}	Drain-Source Voltage	-50	V
V _{GSS}	Gate-Source Voltage	±20	
I _D	Drain Current – Continuous (Note 1)	-0.13	Α
	Drain Current – Pulsed (Note 1)	-0.52	
P _D	Maximum Power Dissipation (Note 1)	0.36	W
	Derate Above 25°C	2.9	mW/°C
T _J , T _{STG}	Operating and Storage Junction Temperature Range	−55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/16" from Case for 10 s	300	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Ratings	Unit
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	350	°C/W

ELECTRICAL CHARACTERISTICS (Note 2) $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARA	CTERISTICS					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	-50	_	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = -250~\mu A,~Referenced~to~25^{\circ}C$	-	-48	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -50 V, V _{GS} = 0 V	-	-	-15	μΑ
		$V_{DS} = -50 \text{ V}, V_{GS} = 0 \text{ V},$ $T_J = 125^{\circ}\text{C}$	-	-	-60	
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±10	nA
ON CHARAC	TERISTICS (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = -1$ mA	-0.8	-1.7	-2	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I _D = -1 mA, Referenced to 25°C	-	3	-	mV/°C
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = -5 \text{ V}, I_D = -0.10 \text{ A}$	-	1.2	10	Ω
		$V_{GS} = -5 \text{ V}, I_D = -0.10 \text{ A},$ $T_J = 125^{\circ}\text{C}$	-	1.9	17	
I _{D(on)}	On-State Drain Current	$V_{GS} = -5 \text{ V}, V_{DS} = -10 \text{ V}$	-0.6	-	-	Α
9FS	Forward Transconductance	$V_{DS} = -25 \text{ V}, I_D = -0.10 \text{ A}$	0.05	0.6	-	S
DYNAMIC CH	HARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$	-	73	-	pF
C _{oss}	Output Capacitance	f = 1.0 MHz	-	10	-	
C _{rss}	Reverse Transfer Capacitance		-	5	-	
R _G	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz	-	9	-	Ω

ELECTRICAL CHARACTERISTICS (Note 2) $T_A = 25^{\circ}C$ unless otherwise noted. (continued)

	,	**	,			
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
SWITCHING	CHARACTERISTICS (Note 2)	•				
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -30 \text{ V, } I_{D} = -0.27 \text{ A,}$ $V_{GS} = -10 \text{ V, } R_{GEN} = 6 \Omega$	-	2.5	5.0	ns
t _r	Turn-On Rise Time		_	6.3	13	
t _{d(off)}	Turn-Off Delay Time		_	10	20	
t _f	Turn-Off Fall Time		_	4.8	9.6	
Qg	Total Gate Charge	$V_{DS} = -25 \text{ V}, I_D = -0.10 \text{ A}, V_{GS} = -5 \text{ V}$	-	0.9	1.3	nC
Q _{gs}	Gate-Source Charge	VGS = −2 V	-	0.2	-	
Q _{gd}	Gate-Drain Charge		_	0.3	-	

DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS

I _S	Maximum Continuous Drain-Source Diode Forward Current		_	ı	-0.13	Α
V _{SD}	Drain–Source Diode Forward Voltage $V_{GS} = 0 \text{ V, I}_{S} = -0.26 \text{ A}$ (Note 2)		ı	-0.8	-1.2	V
t _{rr}	Diode Reverse Recovery Time	I _F = -0.1 A, d _{if} /d _t = 100 A/μs (Note 2)	_	10	-	ns
Q _{rr}	Diode Reverse Recovery Charge	(Note 2)	_	3	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

R_{θJA} is the sum of the junction–to–case and case–to–ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{θJA} is guaranteed by design while R_{θJA} is determined by the user's board design.
 a) 350°C/W when mounted on a minimum pad.

2. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%

TYPICAL CHARACTERISTICS

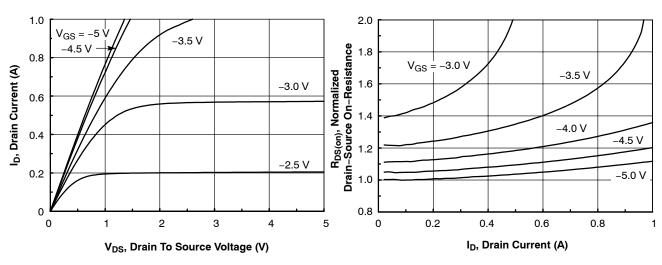
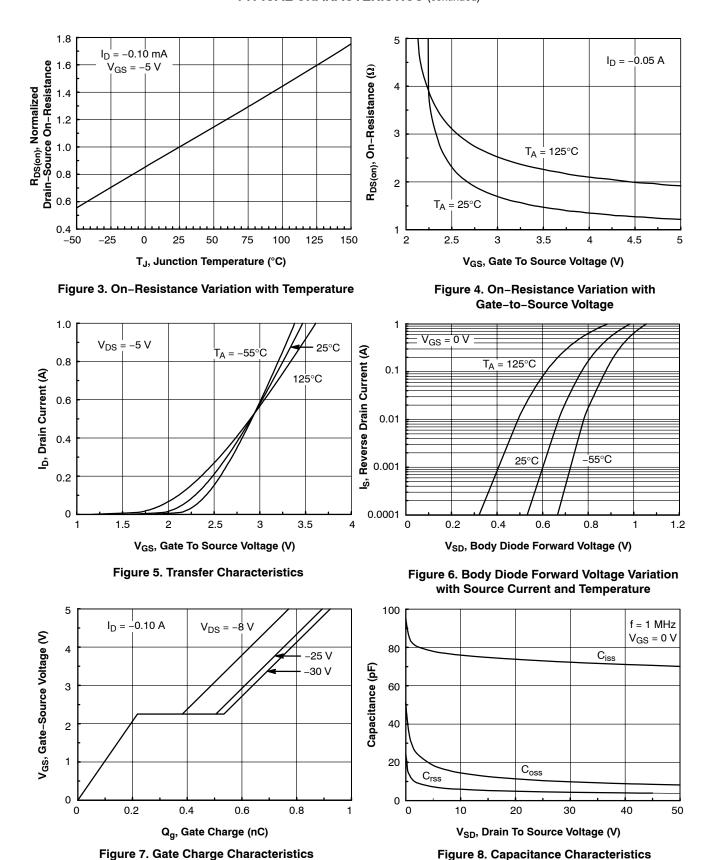



Figure 1. On-Region Characteristics

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage

TYPICAL CHARACTERISTICS (continued)

www.onsemi.com

TYPICAL CHARACTERISTICS (continued)

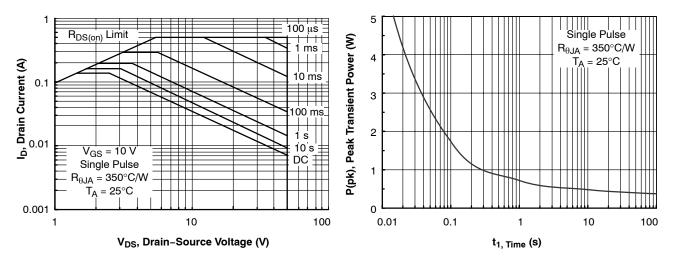


Figure 9. Maximum Safe Operating Area

Figure 10. Single Pulse Maximum Power Dissipation

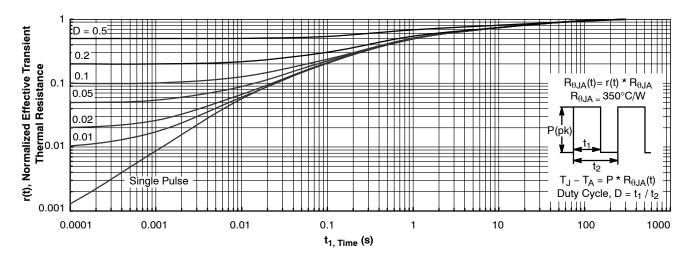
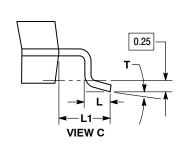
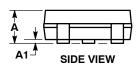
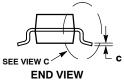


Figure 11. Transient Thermal Response Curve

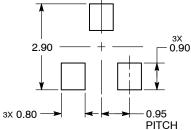
Thermal characterization performed using the conditions described in Note 1a. Transient thermal response will change depending on the circuit board design.




SOT-23 (TO-236) CASE 318-08 **ISSUE AS**

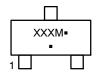

DATE 30 JAN 2018

SCALE 4:1 D - 3X b


TOP VIEW

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS


NOTES:

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,

PROT	RUSIONS, OR GATE BURRS.	
		T

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
HE	2.10	2.40	2.64	0.083	0.094	0.104
T	0°		10°	0°		10°

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE
OT (1 F O			

SOT-23 (TO-236)

STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:	STYLE 13:	STYLE 14:
PIN 1. ANODE	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. SOURCE	PIN 1. CATHODE
ANODE	SOURCE	CATHODE	CATHODE	2. DRAIN	2. GATE
CATHODE	3. GATE	CATHODE-ANODE	ANODE	3. GATE	ANODE

STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:	STYLE 19:	STYLE 20:
PIN 1. GATE	PIN 1. ANODE	PIN 1. NO CONNECTION	PIN 1. NO CONNECTION	PIN 1. CATHODE	PIN 1. CATHODE
CATHODE	CATHODE	ANODE	CATHODE	ANODE	ANODE
ANODE	CATHODE	CATHODE	ANODE	CATHODE-ANOD	E 3. GATE

STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:	STYLE 25:	STYLE 26:
PIN 1. GATE	PIN 1. RETURN	PIN 1. ANODE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE
SOURCE	OUTPUT	2. ANODE	2. DRAIN	2. CATHODE	2. ANODE
3 DRAIN	3 INPLIT	3 CATHODE	3. SOURCE	3. GATE	NO CONNECTION

STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE	
DOCUMENT NUMBER: 98ASB42226B		Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DESCRIPTION:

PAGE 1 OF 1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

BSS84 BSS84-G