

Silicon Carbide Schottky Diode 650 V, 10 A, 30.5 nC

General Description

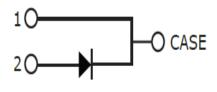
This product family offers state of the art performance. It is designed for high frequency applications where high efficiency and high reliability are required. It is qualified and manufactured on the productive 6 inch SiC line in China fully owned by CR MICRO.

Product Summary

V_{RRM}	650 V	
$\mathbf{I}_{F} \; (T_{C} = 158 ^{\circ}\!$	10 A	
Q_{C}	30.5 nC	

Features

- Low conduction loss due to low V_F
- Extremely low switching loss by tiny Q_C
- Highly rugged due to better surge current
- Industrial standard quality and reliability


Applications

- Server
- Telecom
- High performance SMPS
- Power factor correction

TO-220-2

Equivalent circuit

Package Marking and Ordering Information

Part #	Marking	Package	Packing	Reel Size	Tape Width	Qty
CRXI10D065G1		TO-220-2				

Maximum Ratings (at Tc = 25 °C, unless otherwise specified)

Parameter	Symbol	Value	Unit
Repetitive Peak Reverse Voltage	V_{RRM}	650	V
Surge Peak Reverse Voltage	V_{RSM}	650	V
DC Peak Reverse Voltage	V_R	650	V
Continuous Forward Current			
$T_C = 25$ °C	I_{F}	31	Α
$T_C = 135$ °C	*F	15.7	A
$T_{C} = 158^{\circ}C$		10	
Repetitive Peak Forward Surge Current			
$T_C = 25$ °C, $t_p = 10$ ms,Half Sine Pulse	${ m I}_{\sf FRM}$	46	Α
$T_C = 110$ °C, t_p =10ms,Half Sine Pulse		31	
Non-Repetitive Forward Surge Current			
$T_C = 25$ °C, $t_p = 10$ ms,Half Sine Pulse	${ m I}_{\sf FSM}$	90	Α
$T_C = 110$ °C, t_p =10ms,Half Sine Pulse		71	
Non-Repetitive Forward Surge Current			
$T_C = 25$ °C, $t_p = 10$ ms,Half Sine Pulse	∫ i²dt	40.2	A^2s
$T_C = 110$ °C, $t_p = 10$ ms, $Half Sine Pulse$		25	
Power dissipation			
$T_C = 25$ °C	P_{tot}	136.4	W
$T_{C} = 110^{\circ}C$		59	
Operating junction Range	T _j	-55 to +175	°C
Storage temperature Range	$T_{ m stg}$	-55 to +150	°C

Silicon Carbide Schottky Diode 650 V, 10 A, 30.5 nC

Thermal Resistance

Parameter	Symbol	Typ.	Unit
Thermal resistance, junction – case.	R_{thJC}	1.1	°C/W

Electrical Characteristic (at Tc = 25 °C, unless otherwise specified)

Parameter	Symbol	Value			Unit	Test Condition
<u> </u>	Syllibol	min.	typ.	max.	Unit	rest condition
						I _F =10A
Forward Voltage	V_{F}	-	1.5	1.8	V	T _j =25°C
		-	2.0	2.4		T _j =175°C
			2			V _R =650V
Reverse Current	I_{R}			60	μΑ	T _j =25°C
		-	-	220		T _j =175°C
						V_R =400 V , T_j =25 $^{\circ}$ C
Total Capacitive Charge	Q _C	-	30.5	-	nC	$Q_C = \int_0^{V_R} C(V) dV$
						$T_j=25^{\circ}C$, f=1MHz
Total Capacitance	С	-	574	-	nΕ	V _R =0V
		-	57.1	-	pF	V _R =200V
		-	52.6	ı		V _R =400V

Characteristics Curve:

Fig 1: Forward Characteristics

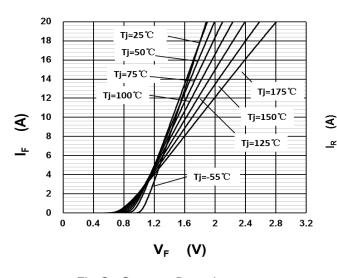


Fig 3: Current Derating

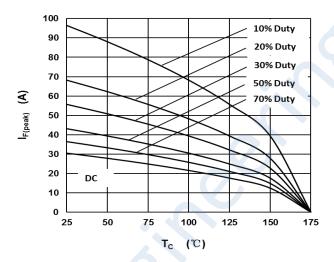


Fig 5: Capacitance vs. Reverse Voltage

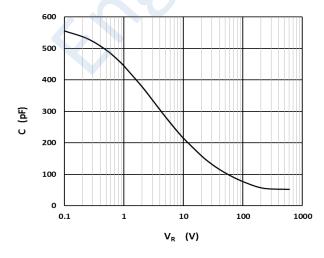


Fig 2: Reverse Characteristics

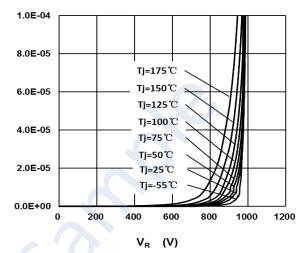
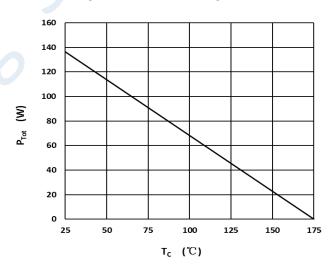



Fig 4: Power Derating

riu o: keverse Charde vs. keverse voltade

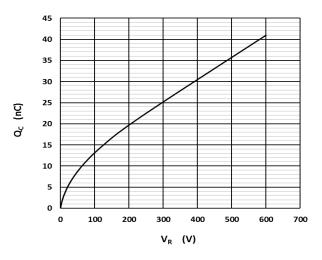
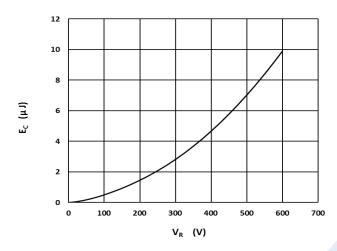
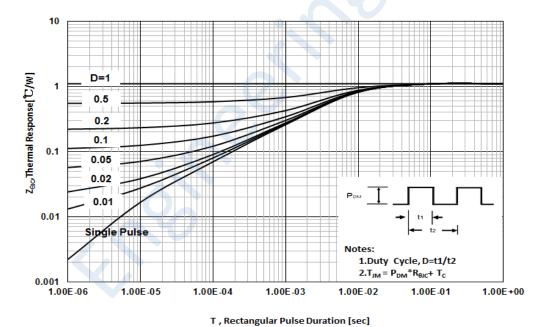
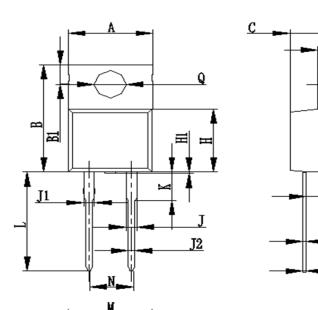


Fig 7: Typical Capacitance Stored Energy


Fig 8: Transient Thermal Impedance

Package Outline: TO-220-2

1		
1		

POS	Min	Тур	Max
Α	9.9	10.12	10.32
В	15.4	15.6	15.8
B1	2.54	2.74	2.94
C	4.37	4.57	4.77
D	1.17	1.27	1.37
Е	2.4	2.6	2.8
F	0.46	0.56	0.66
G	0.28	0.38	0.48
Н	9	9.2	9.4
H1	0	0.25	0.5
J	1.19	1.35	1.45
J1	1.17	1.27	1.37
J2	0.71	0.81	0.91
K	2.5	2.9	3.3
L	12.5	13	13.5
M	9.9	10	10.1
N	4.84	5.08	5.28
Q	3.64	3.84	4.04

Silicon Carbide Schottky Diode 650 V, 10 A, 30.5 nC

Revision History

Revison	Date	Major changes
1.0		Release of formal version.

Warnings

Exceeding the maximum ratings of the device in performance may cause damage to the device, even the permanent failure, which may affect the dependability of the machine. It is suggested to be used under 80 percent of the maximum ratings of the device.

- 1. When installing the heatsink, please pay attention to the torsional moment and the smoothness of the heatsink
- 2. This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control systems.

