CRXI16D065G1

Silicon Carbide Schottky Diode 650 V, 16 A, 47.3 nC

General Description

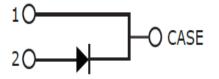
This product family offers state of the art performance. It is designed for high frequency applications where high efficiency and high reliability are required. It is qualified and manufactured on the productive 6 inch SiC line in China fully owned by CR MICRO.

Features

- \bullet Low conduction loss due to low $V_{\rm F}$
- \bullet Extremely low switching loss by tiny Q_{C}
- Highly rugged due to better surge current
- Industrial standard quality and reliability

Applications

- Server
- Telecom
- High performance SMPS
- Power factor correction


TO-220-2

Product Summary

V _{RRM}	650 V	
I _F (T _C =151℃)	16 A	
Q _C	47.3 nC	

Package Marking

Part #	Marking	Package
CRXI16D065G1	CRXI16D065G1	TO-220-2

Silicon Carbide Schottky Diode 650 V, 16 A, 47.3 nC

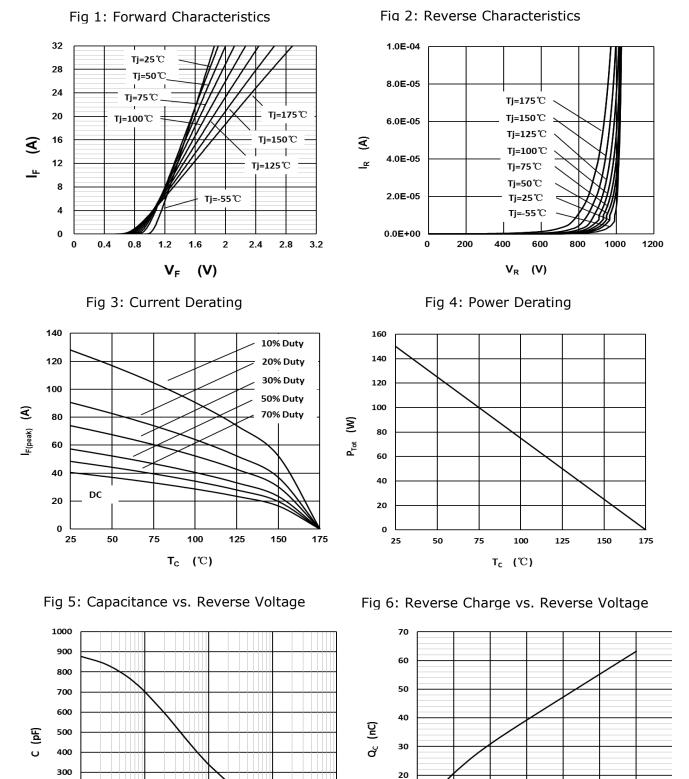
Parameter	Symbol	Value	Unit	
Repetitive Peak Reverse Voltage	V _{RRM}	650	V	
Surge Peak Reverse Voltage	V _{RSM}	650	V	
DC Peak Reverse Voltage	V _R	650	V	
Continuous Forward Current $T_{C} = 25^{\circ}C$		40	А	
$T_{c} = 135^{\circ}C$ $T_{c} = 151^{\circ}C$	IF	I _F 20 16		
Repetitive Peak Forward Surge Current $T_c = 25^{\circ}C, t_p = 10ms$, Half Sine Pulse $T_c = 110^{\circ}C, t_p = 10ms$, Half Sine Pulse	I _{FRM}	66 46	A	
Non-Repetitive Forward Surge Current $T_{c} = 25^{\circ}C, t_{p}=10$ ms,Half Sine Pulse $T_{c} = 110^{\circ}C, t_{p}=10$ ms,Half Sine Pulse	I _{FSM}	162 150	A	
Non-Repetitive Forward Surge Current $T_{c} = 25^{\circ}C, t_{p}=10ms, Half Sine Pulse$ $T_{c} = 110^{\circ}C, t_{p}=10ms, Half Sine Pulse$	∫ i ² dt	130 112	A ² s	
Power dissipation $T_{C} = 25^{\circ}C$ $T_{C} = 110^{\circ}C$	P _{tot}	150 65	W	
Operating junction Range	Tj	-55 to +175	°C	
Storage temperature Range	${\cal T}_{\sf stg}$	-55 to +150	°C	

Thermal Resistance

Parameter	Symbol	Тур.	Unit
Thermal resistance, junction – case.	R_{thJC}	1.0	°C/W

Electrical Characteristic (at Tc = 25 °C, unless otherwise specified)

Parameter	Symbol	Value			Unit	Test Condition
rarameter	Symbol	min.	typ.	max.	onic	
						I _F =16A
Forward Voltage	V _F	-	1.5	1.8	V	T _j =25°C T _j =175°C
		-	2.0	2.4		T _j =175°C
						V _R =650V
Reverse Current	Ι _R	-	-	95	μA	T _j =25°C
		-	-	370		T _j =175°C
Total Capacitive Charge	Q _c	-	47.3		nC	V_{R} =400V, T_{j} =25°C
				-		$Q_C = \int_0^{V_R} C(V) dV$
Total Capacitance	С				pF	T _j =25℃, f=1MHz
		-	910	-		V _R =0V
		-	88.5	-		V _R =200V
		-	79.9	-		V _R =400V



CRXI16D065G1

Silicon Carbide Schottky Diode 650 V, 16 A, 47.3 nC

Characteristics Curve:

 V_{R}

(V)

כדאוכדס

0.1

V_R (V)

Silicon Carbide Schottky Diode 650 V, 16 A, 47.3 nC

Fig 7: Typical Capacitance Stored Energy

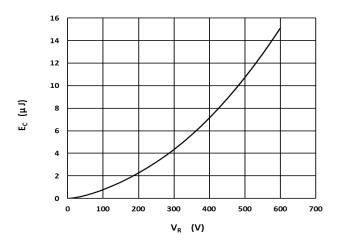
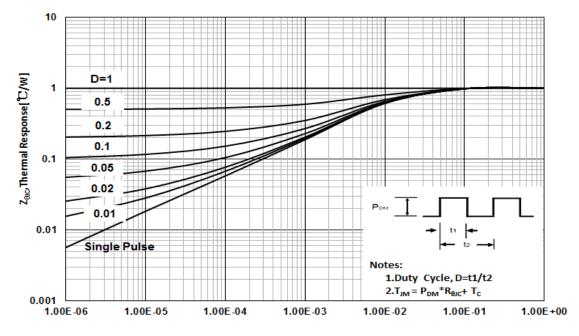
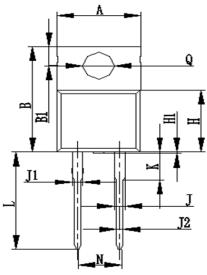
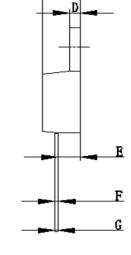



Fig 8: Transient Thermal Impedance

T, Rectangular Pulse Duration [sec]





CRXI16D065G1

Silicon Carbide Schottky Diode 650 V, 16 A, 47.3 nC

Package Outline: TO-220-2

C

L	M	_
		-
	_	
<u> </u>	-	-
	1	

POS	POS Min Typ		Max
А	9.9	10.12	10.32
В	15.4	15.6	15.8
B1	2.54	2.74	2.94
С	4.37	4.57	4.77
D	1.17	1.27	1.37
E	2.4	2.6	2.8
F	0.46	0.56	0.66
G	G 0.28 0.38		0.48
Н	9 9.2		9.4
H1	H1 0 0.1		0.5
J	1.19	1.35	1.45
J1	1.17	1.27	1.37
J2	0.71	0.81	0.91
К	2.5	2.9	3.3
L	12.5	13	13.5
М	9.9	10	10.1
N	4.84	5.08	5.28
Q	3.64	3.84	4.04

Silicon Carbide Schottky Diode 650 V, 16 A, 47.3 nC

Revision History

Revison	Date	Major changes
1.0		Release of formal version.

Warnings

Exceeding the maximum ratings of the device in performance may cause damage to the device, even the permanent failure, which may affect the dependability of the machine. It is suggested to be used under 80 percent of the maximun ratings of the device.

1. When installing the heatsink, please pay attention to the torsional moment and the smoothness of the heatsink.

2. This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control systems.

