

#### LTV-332J series

5.0 Amp Output Current IGBT Gate Driver Optocoupler with Integrated ( $V_{\text{CE}}$ ) Desaturation Detection, UVLO Fault Status Feedback and Active Miller Clamping

#### 1. DESCRIPTION

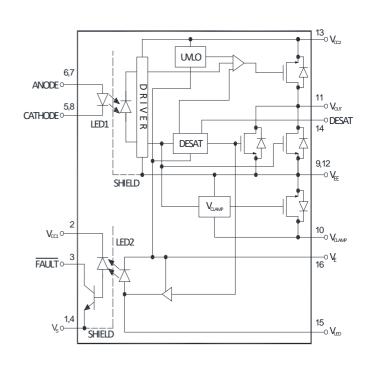
The LTV-332J is an advanced 5.0 A output current, easy-to-use, intelligent gate driver which makes IGBT V<sub>CE</sub> fault protection compact, affordable, and easy-to implement. Features such as integrated V<sub>CE</sub> detection, under voltage lockout (UVLO), "soft" IGBT trun-off, isolated open collector fault feedback and active Miller clamping provide maximum design flexibility and circuit protection.

The LTV-332J contains an AlGaAs LED. The LED is optically coupled to an integrated circuit with a power output stage. LTV-332J is ideally suited for driving power IGBTs and MOSFET used in motor control inverter applications. For IGBTs with higher ratings, the LTV-332J can be used to drive a discrete power stage which drives the IGBTs gate. The LTV-332J has an insulation voltage of V<sub>IORM</sub> = 1414 V<sub>PEAK</sub>.

The Optocoupler operational parameters are guaranteed over the temperature range from -40°C ~ +105°C.

#### 1.1 Features

- Under Voltage Lock-Out Protection (UVLO) with Hysteresis
- Desaturation Detection
- Miller Clamping
- Open Collector Isolated fault feedback
- "Soft" IGBT Turn-off
- Fault Reset by next LED turn-on (low to high) after fault mute period


#### 1.2 Specifications

- 5.0 A maximum peak output current
- 4.0 A minimum peak output current
- 200 ns maximum propagation delay
- 100 ns maximum pulse width distortion (PWD)
- 50 kV/us minimum Common Mode Rejection (CMR) at V<sub>CM</sub> = 1500 V
- I<sub>CC</sub> = 4.5 mA maximum supply current
- Guaranteed performance over temperature -40°C ~ +105°C.
- 1.7 A Miller Clamp. Clamp pin short to VEE if not used
- Safety approval:
- UL/ cUL Recognized 5000 V<sub>RMS</sub>/1 min (To be continued)
- IEC/EN/DIN EN 60747-5-5 V<sub>IORM</sub> = 1414 Vpeak(To be continued)

#### 1.3 Applications

- Isolated IGBT/MOSFET gate drive
- Industrial inverters and Uninterruptible power supply (UPS)
- AC and Brushless DC motor drives

#### 1.4 Functional Diagram







#### 1.5 Pin description

|   |                  |                              | ſ  |
|---|------------------|------------------------------|----|
| 1 | V <sub>s</sub>   | $V_{\text{E}}$               | 16 |
| 2 | V <sub>CC1</sub> | $V_{\scriptscriptstyle LED}$ | 15 |
| 3 | FAULT D          | ESAT                         | 14 |
| 4 | V <sub>s</sub>   | $V_{cc2}$                    | 13 |
| 5 | CATHODE          | $V_{\text{EE}}$              | 12 |
| 6 | ANODE            | V <sub>out</sub>             | 11 |
| 7 | ANODE            | $V_{CLAMP}$                  | 10 |
| 8 | CATHODE          | $V_{\text{EE}}$              | 9  |

| Pin | Symbol           | Description                                                                                                                                                                                                                                                                                                                                                                                     |
|-----|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Vs               | Input Ground                                                                                                                                                                                                                                                                                                                                                                                    |
| 2   | V <sub>CC1</sub> | Positive input supply voltage (3.3 V to 5.5 V)                                                                                                                                                                                                                                                                                                                                                  |
| 3   | FAULT            | Fault output. FAULT changes from a high impedance state to a logic low output within 5 µs of the voltage on the DESAT pin exceeding an internal reference voltage of 7 V. FAULT output is an open collector which allows the FAULT outputs from all LTV-332J in a circuit to be connected together in a "wired OR" forming a single fault bus for interfacing directly to the micro-controller. |
| 4   | Vs               | Input Ground                                                                                                                                                                                                                                                                                                                                                                                    |
| 5   | CATHODE          | Cathode                                                                                                                                                                                                                                                                                                                                                                                         |
| 6   | ANODE            | Anode                                                                                                                                                                                                                                                                                                                                                                                           |
| 7   | ANODE            | Anode                                                                                                                                                                                                                                                                                                                                                                                           |
| 8   | CATHODE          | Cathode                                                                                                                                                                                                                                                                                                                                                                                         |
| 9   | $V_{EE}$         | Output supply voltage                                                                                                                                                                                                                                                                                                                                                                           |
| 10  | $V_{CLAMP}$      | Miller clamp                                                                                                                                                                                                                                                                                                                                                                                    |
| 11  | V <sub>OUT</sub> | Gate drive voltage output                                                                                                                                                                                                                                                                                                                                                                       |
| 12  | $V_{EE}$         | Output supply voltage                                                                                                                                                                                                                                                                                                                                                                           |
| 13  | V <sub>CC2</sub> | Positive output supply voltage                                                                                                                                                                                                                                                                                                                                                                  |
| 14  | DESAT            | Desaturation voltage input. When the voltage on DESAT exceeds an internal reference voltage of 6.5 V while the IGBT is on, FAULT output is changed from a high impedance state to a logic low state within 5 µs.                                                                                                                                                                                |
| 15  | $V_{LED}$        | LED anode. This pin must be left unconnected for guaranteed data sheet performance. (For optical coupling testing only)                                                                                                                                                                                                                                                                         |
| 16  | V <sub>E</sub>   | Common (IGBT emitter) output supply voltage                                                                                                                                                                                                                                                                                                                                                     |



#### 1.6 Ordering Information

LTV-332J is UL Recognized with 5000 Vrms for 1 minute per UL1577.

| Part     | Package  | Option | Tape & | IEC/EN/DIN/EN<br>60747-5-5 | Quantity     | Others              |        |        |      |   |  |  |             |
|----------|----------|--------|--------|----------------------------|--------------|---------------------|--------|--------|------|---|--|--|-------------|
| number   | 1 ackage | Name   | Reel   | (V <sub>PR</sub> method b) | Quantity     | Others              |        |        |      |   |  |  |             |
|          |          | -      |        |                            | 4E par tuba  |                     |        |        |      |   |  |  |             |
|          | SOP-16   | -V     |        | •                          | 45 per tube  |                     |        |        |      |   |  |  |             |
| LTV-332J |          | SOP-16 | SOP-16 | SOP-16                     | SOP-16       | SOP-16              | SOP-16 | SOP-16 | -TP1 | • |  |  | Location at |
|          |          | TP1-V  | •      | •                          | 850 per reel | lower right of tape |        |        |      |   |  |  |             |

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

#### Example 1:

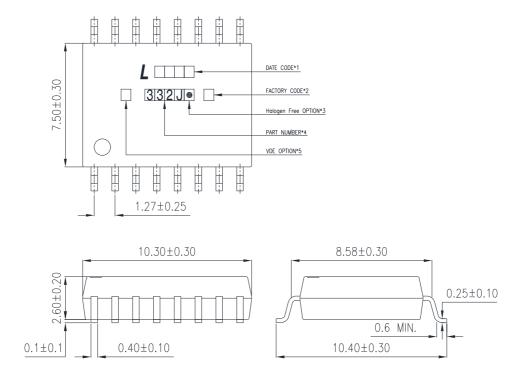
LTV332J-V to order product of SOP-16 Surface Mount package in Tube packaging(Quantity: 45pcs per tube) with IEC/EN/DIN EN 60747-5-5 Safety Approval (V<sub>PR</sub> method b).

#### Example 2:

LTV332JTP1-V to order product of SOP-16 Surface Mount package in tape& reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval (V<sub>PR</sub> method b).

Above option datasheets are available. Please contact your LITEON sales representative or authorized distributor for information.

#### Example 3:


LTV-332J-TP1 to order product of SOP-16 Surface Mount package in tape& reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval (Without V<sub>PR</sub> method b).

Above option datasheets are available. Please contact your LITEON sales representative or authorized distributor for information.



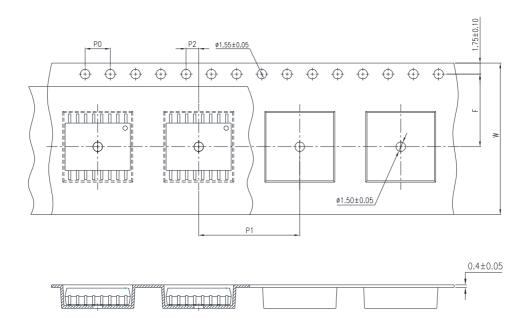
#### 2. PACKAGE DIMENSIONS

#### 2.1 LTV-332J



#### Notes:

- \*1. Year date code.
- \*2. 2-digit work week.
- \*3. Factory identification mark


(W: Changzhou).

Dimensions are in Millimeters and (Inches).



#### 3. TAPING DIMENSIONS

#### 3.1 LTV-332J-TP1



| Description                            | Symbol         | Dimension in mm (inch) |
|----------------------------------------|----------------|------------------------|
| Tape wide                              | W              | 24±0.3 (0.94)          |
| Pitch of sprocket holes                | P <sub>0</sub> | 4±0.1 (0.15)           |
| Distance of compartment                | F              | 11.5±0.1 (0.452)       |
| Distance of compartment                | $P_2$          | 2±0.1 (0.079)          |
| Distance of compartment to compartment | P <sub>1</sub> | 16±0.1 (0.63)          |

#### 3.3 Quantities Per Reel

| Package Type     | LTV-332J |
|------------------|----------|
| Quantities (pcs) | 850      |



#### 4. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics

Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.

| Description                                                                                          | Symbol                | Characteri-<br>stics | Unit       |
|------------------------------------------------------------------------------------------------------|-----------------------|----------------------|------------|
| Installation classification per DIN VDE 0110/39, Table 1                                             |                       |                      |            |
| for rated mains voltage ≤ 150 V <sub>ms</sub>                                                        |                       | I - IV               |            |
| for rated mains voltage ≤ 300 V <sub>ms</sub>                                                        |                       | I - IV               |            |
| for rated mains voltage ≤ 600 V <sub>ms</sub>                                                        |                       | I - IV               |            |
| for rated mains voltage ≤ 1000 V <sub>rms</sub>                                                      |                       | 1 - 111              |            |
| Climatic Classification                                                                              |                       | 40/100/21            |            |
| Pollution Degree (DIN VDE 0110/39)                                                                   |                       | 2                    |            |
| Maximum Working Insulation Voltage                                                                   | V <sub>IORM</sub>     | 1414                 | $V_{peak}$ |
| Input-to-Output Test Voltage, Method b *a,                                                           | $V_{PR}$              | 2651                 | $V_{peak}$ |
| $V_{IORM} \times 1.875 = V_{PR}$ , 100% Production Test with $t_m = 1$ sec, Partial Discharge < 5 pC | *PK                   | 2001                 | • peak     |
| Input-to-Output Test Voltage, Method a *a,                                                           | V                     | 2262                 | V          |
| $V_{\text{IORM}}$ × 1.6 = $V_{PR}$ , Type and Sample Test, $t_m$ = 10 sec, Partial Discharge < 5 pC  | $V_{PR}$              | 2202                 | $V_{peak}$ |
| Highest Allowable Overvoltage (Transient Overvoltage, t <sub>ini</sub> = 60 sec)                     | V <sub>IOTM</sub>     | 8000                 | $V_{peak}$ |
| Safety Limiting Values (Maximum values allowed in the event of a failure)                            |                       |                      |            |
| Case Temperature                                                                                     | Ts                    | 175                  | °C         |
| Input Current *b                                                                                     | I <sub>S, INPUT</sub> | 400                  | mA         |
| Output Power *b                                                                                      | Ps, output            | 1200                 | mW         |
| Insulation Resistance at $T_S$ , $V_{IO}$ = 500 $V$                                                  | R <sub>S</sub>        | ≥ 10 <sup>9</sup>    | Ω          |

<sup>\*</sup>a. Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, IEC/EN/DIN EN 60747-5-5, for a detailed description.

<sup>\*</sup>b. Ratings apply to all devices except otherwise noted in the Package column.



### 5. Insulation and Safety Related Specifications

| Part number                                             | Symol  | LTV-332J | Units | Conditions                                                                                                                                                 |
|---------------------------------------------------------|--------|----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Minimum External<br>Air Gap<br>(External Clearance)     | L(101) | 8.3      | mm    | Measured from input terminals to output terminals, shortest distance through air.                                                                          |
| Minimum External<br>Tracking<br>(External Creepage)     | L(102) | 8.3      | mm    | Measured from input terminals to output terminals, shortest distance path along body.                                                                      |
| Minimum Internal<br>Plastic Gap<br>(Internal Clearance) |        | 0.5      | mm    | Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity. |
| Tracking Resistance<br>(Comparative<br>Tracking Index)  | СТІ    | >175     | V     | DIN IEC 112/VDE 0303 Part 1                                                                                                                                |
| Isolation Group                                         |        | Illa     |       | Material Group (DIN VDE 0110, 1/89, Table 1)                                                                                                               |



#### 6. RATING AND CHARACTERISTICS

#### **6.1 Absolute Maximum Ratings**

| Parameter                      | Symbol                               | Min  | Max                                   | Unit | Note |
|--------------------------------|--------------------------------------|------|---------------------------------------|------|------|
| Storage Temperature            | $T_{stg}$                            | -55  | +125                                  | °C   | _    |
| Operating Temperature          | $T_{opr}$                            | -40  | +105                                  | °C   | _    |
| Output IC Junction Temperature | TJ                                   | _    | 125                                   | °C   | _    |
| Average Forward Input Current  | I <sub>F</sub>                       | _    | 25                                    | mA   | 3    |
| Reverse Input Voltage          | $V_R$                                | _    | 5                                     | V    | _    |
| Peak Transient Input Current   | I <sub>F(TRAN)</sub>                 | _    | 1                                     | А    | 1    |
| "High" Peak Output Current     | I <sub>OH(PEAK)</sub>                | _    | 5.0                                   | А    | 2    |
| "Low" Peak Output Current      | I <sub>OL(PEAK)</sub>                | _    | 5.0                                   | А    | 2    |
| Positive Input Supply Voltage  | V <sub>CC1</sub>                     | -0.5 | 7                                     | V    |      |
| FAULT Output Current           | I <sub>FAULT</sub>                   |      | 8                                     | mA   |      |
| FAULT Pin Voltage              | $V_{FAULT}$                          | -0.5 | V <sub>CC1</sub>                      | V    |      |
| Total Output Supply Voltage    | (V <sub>CC2</sub> -V <sub>EE</sub> ) | -0.5 | 35                                    | V    | _    |
| Negative Output Supply Voltage | (V <sub>E</sub> -V <sub>EE</sub> )   | -0.5 | 15                                    | V    |      |
| Positive Output Supply Voltage | (V <sub>CC2</sub> -V <sub>E</sub> )  | -0.5 | 35-(V <sub>E</sub> -V <sub>EE</sub> ) | V    |      |
| Output Voltage                 | V <sub>O(PEAK)</sub>                 | -0.5 | 35                                    | V    | _    |
| Peak Clamping Sinking Current  | I <sub>Clamp</sub>                   | _    | 1.7                                   | А    |      |
| Miller Clamping Pin Voltage    | $V_{Clamp}$                          | -0.5 | V <sub>CC2</sub>                      | V    |      |
| DESAT Voltage                  | $V_{DESAT}$                          | VE   | V <sub>E</sub> +10                    | V    |      |
| Power Dissipation              | Pı                                   |      | 150                                   | mW   | _    |
| Output Power Dissipation       | Po                                   | _    | 600                                   | mW   | _    |
| Lead Solder Temperature (10s)  | T <sub>sol</sub>                     | _    | 260                                   | °C   | _    |

Note: Ambient temperature = 25°C, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.



#### **6.2 Recommended Operating Conditions**

| Parameter                      | Symbol                               | Min      | Max                                    | Unit |
|--------------------------------|--------------------------------------|----------|----------------------------------------|------|
| Operating Temperature          | T <sub>A</sub>                       | -40      | 105                                    | °C   |
| Total Output Supply Voltage    | (V <sub>CC2</sub> -V <sub>EE</sub> ) | 15       | 30                                     | V    |
| Negative Output Supply Voltage | (V <sub>E</sub> -V <sub>EE</sub> )   | 0(-0.5)  | 15                                     | V    |
| Positive Output Supply Voltage | (V <sub>CC2</sub> -V <sub>E</sub> )  | 15(-0.5) | 30- (V <sub>E</sub> -V <sub>EE</sub> ) | V    |
| Input Current (ON)             | I <sub>FL(ON)</sub>                  | 8        | 12                                     | mA   |
| Input Voltage (OFF)            | $V_{F(OFF)}$                         | -3.6(0)  | 0.8                                    | V    |

#### 6.3 ELECTRICAL OPTICAL CHARACTERISTICS

|        | Parameter                             | Symb               | Min. | Тур.   | Max. | Unit             | Test Condition                                           | Figure | Note |
|--------|---------------------------------------|--------------------|------|--------|------|------------------|----------------------------------------------------------|--------|------|
|        | Input Forward Voltage                 | $V_{F}$            | 1.2  | 1.37   | 1.8  | V                | I <sub>F</sub> = 10mA                                    |        |      |
|        | Input Forward Voltage                 | $\Delta V_F$ /     |      | 1 227  |      | mV/ <sup>O</sup> | I <sub>F</sub> = 10mA                                    |        |      |
|        | Temperature Coefficient               | ΔΤ                 |      | -1.237 |      | С                | IF = TOTIA                                               |        |      |
|        | Input Reverse Voltage                 | $BV_R$             | 5    |        |      | V                | I <sub>R</sub> = 10μΑ                                    |        |      |
| Input  | Input Threshold Current (Low to High) | I <sub>FLH</sub>   |      | 2.5    | 6    | mA               | I <sub>O</sub> = 0 A , V <sub>O</sub> > 5V               |        |      |
|        | Input Threshold Voltage               | $V_{FHL}$          | 0.8  | 1.26   |      | V                |                                                          |        |      |
|        | (High to Low)  Input Capacitance      | C <sub>IN</sub>    |      | 33     |      | pF               | f = 1 MHz, V <sub>F</sub> = 0 V                          |        |      |
|        | FAULT Logic Low Output<br>Voltage     | V <sub>FAULT</sub> |      |        | 0.4  | V                | I <sub>FAULT</sub> = 1.1 mA, V <sub>CC1</sub><br>= 5.5 V |        |      |
|        |                                       |                    |      |        | 0.4  | V                | $I_{FAULT} = 1.1 \text{ mA}, V_{CC1}$<br>= 3.3 V         |        |      |
| Output | FAULT Logic High Output               | I <sub>FAULT</sub> |      |        | 0.5  | μA               | V <sub>FAULT</sub> = 5.5 V, V <sub>CC1</sub> = 5.5 V     |        |      |
|        | Current                               |                    |      |        | 0.3  | μA               | V <sub>FAULT</sub> = 3.3 V, V <sub>CC1</sub> = 3.3 V     |        |      |
|        | High Level Supply Current             | I <sub>CC2H</sub>  |      | 2.4    | 4.5  | mA               | Output Open,<br>I <sub>F</sub> = 7 to 16 mA              |        | 8    |





| Low Level Supply Current             | I <sub>CC2L</sub>  |                   | 2.5                     | 4.5                      | mA | Output Open,<br>$V_F = 0$ to +0.8 V                     |    |              |
|--------------------------------------|--------------------|-------------------|-------------------------|--------------------------|----|---------------------------------------------------------|----|--------------|
| High Level Output                    |                    |                   |                         | -2.0                     |    | $V_0 = V_{CC2} - 3 V$                                   | 40 | 4            |
| Current                              | I <sub>OH</sub>    |                   |                         | -5.0                     | А  | V <sub>o</sub> = V <sub>CC2</sub> - 7 V                 | 19 | 2            |
| Low Level Output Current             | I <sub>OL</sub>    | 2.0               | 1.5                     |                          | А  | V <sub>O</sub> = V <sub>EE</sub> + 2 V                  | 20 | 4            |
| Low Level Output Current             | IOL                | 5.0               |                         |                          | A  | V <sub>O</sub> = V <sub>EE</sub> + 6 V                  | 20 | 2            |
| High Level Output Voltage            | V <sub>он</sub>    | V <sub>CC</sub> - | V <sub>CC</sub><br>_1.0 |                          | V  | $I_{O} = -100 \text{ mA}$ ,<br>$I_{F} = 10 \text{ mA}$  | 17 | 5            |
| Low Level Output Voltage             | V <sub>OL</sub>    |                   | V <sub>EE</sub><br>+0.1 | V <sub>EE</sub><br>+0.25 | V  | $I_0 = -100 \text{ mA}$ ,<br>$I_F = 0 \text{ mA}$       | 18 | 6,7,8,<br>22 |
| Clamp Low Level Sinking<br>Current   | I <sub>CL</sub>    | 0.5               | 1.1                     |                          | A  | V <sub>tClamp</sub> = 2.0 V                             |    |              |
| Blanking Capacitor Charging Current  | І <sub>снв</sub>   | -0.13             | -0.24                   | -0.33                    | mA | V <sub>DESAT</sub> = 2 V                                |    | 8.9          |
| Blanking Capacitor Discharge Current | I <sub>DSCHG</sub> | 10                | 30                      |                          | mA | V <sub>DESAT</sub> = 7 V                                |    |              |
| DESAT Threshold                      | $V_{DESAT}$        | 6                 | 6.5                     | 7.5                      | V  | V <sub>CC2</sub> – V <sub>E</sub> > V <sub>UVLO</sub> . |    | 7            |
| Clamp Pin Threshold<br>Voltage       | $V_{tClamp}$       |                   | 2.0                     |                          | V  |                                                         |    |              |
| UVLO Threshold                       | $V_{UVLO+}$        | 10.5              | 11.6                    | 12.5                     | V  | $V_{O} > 5V, I_{F} = 10 \text{ mA}$                     |    | 6,8,10       |
| OVEO TITESTICIO                      | V <sub>UVLO-</sub> | 9.2               | 10.3                    | 11.1                     | V  | $V_{O} < 5V, I_{F} = 10 \text{ mA}$                     | 22 | ,11          |
| UVLO Hysteresis                      | UVLO               |                   | 1.3                     |                          | V  | ( V <sub>UVLO+</sub> - V <sub>UVLO-</sub> )             |    |              |



#### **6.4 SWITCHING SPECIFICATION**

| Parameter                                                      | Symbol                    | Min. | Тур. | Max. | Unit | Test Condition                                                                                                                        | Figure | Note  |
|----------------------------------------------------------------|---------------------------|------|------|------|------|---------------------------------------------------------------------------------------------------------------------------------------|--------|-------|
| Propagation Delay Time to<br>High Output Level                 | t <sub>PLH</sub>          | 50   |      | 200  |      |                                                                                                                                       |        | 12,14 |
| Propagation Delay Time to Low Output Level                     | t <sub>PHL</sub>          | 50   |      | 200  |      | $R_g = 10 \Omega$ ,                                                                                                                   |        |       |
| Pulse Width Distortion                                         | PWD                       | -80  |      | 80   |      | C <sub>g</sub> = 10 nF,                                                                                                               | 23     | 13,16 |
| Propagation delay difference between any two parts or channels | PDD                       | -100 |      | 100  | ns   | $f = 10 \text{ kHz},$ Duty Cycle = 50% $I_F = 10 \text{ mA},$                                                                         |        | 15,16 |
| Output Rise Time (10 to 90%)                                   | Tr                        |      | 50   |      |      | V <sub>CC2</sub> = 30V                                                                                                                |        |       |
| Output Fall Time (90 to 10%)                                   | Tf                        |      | 50   |      |      |                                                                                                                                       | 23     |       |
| DESAT Sense to 90%VO Delay                                     | t <sub>DESAT(90%)</sub>   |      | 0.25 | 0.5  | μs   | $C_{DESAT} = 100 \text{ pF, Rg} = 10 \Omega,$ $Cg = 10 \text{ nF, V}_{CC2} = 30 \text{ V}$                                            |        |       |
| DESAT Sense to 10%VO Delay                                     | t <sub>DESAT(10%)</sub>   |      | 2    | 3    | μs   | $C_{DESAT} = 100 \text{ pF, Rg} = 10 \Omega,$ $Cg = 10 \text{ nF, V}_{CC2} = 30 \text{ V}$                                            |        |       |
| DESAT Sense to Low Level FAULT Signal Delay                    | t <sub>DESAT(FAULT)</sub> |      | 0.25 | 0.5  | μs   | $C_{DESAT} = 100 pF, R_F = 2.1 \text{ k}\Omega,$ $C_F = 1 \text{ nF, } Rg = 10 \Omega,$ $Cg = 10 \text{ nF, } V_{CC2} = 30 \text{ V}$ |        | 17    |
| DESAT Sense to DESAT Low<br>Propagation Delay                  | t <sub>DESAT(LOW)</sub>   |      | 0.25 |      | μs   | $C_{DESAT}$ =100 pF,R <sub>F</sub> =2.1 k $\Omega$ ,<br>Rg = 10 $\Omega$ , Cg = 10 nF,<br>$V_{CC2}$ = 30 V                            |        | 18    |



| DESAT Input Mute                                    | t <sub>DESAT(MUTE)</sub>  | 5   |   |   | μs    |                                                                                                                           | 19         |
|-----------------------------------------------------|---------------------------|-----|---|---|-------|---------------------------------------------------------------------------------------------------------------------------|------------|
| RESET to High Level FAULT Signal Delay              | t <sub>RESET(FAULT)</sub> | 0.2 | 1 | 2 | μs    | $C_{DESAT}$ =100pF,R <sub>F</sub> = 2.1 k $\Omega$ ,<br>Rg =10 $\Omega$ ,Cg =10nF,<br>$V_{CC1}$ = 5.5 V, $V_{CC2}$ = 30 V |            |
| Common mode transient immunity at high level output | CMH                       | 15  |   |   | kV/µs | $T_A = 25$ °C, $I_F = 10$ mA, $V_{CM} = 1500$ V, $V_{CC2} = 30$ V, $R_F = 2.1$ k $\Omega$ , $C_F = 15$ pF                 | 20.22      |
|                                                     |                           | 50  |   |   | kV/µs | $T_A = 25$ °C, $I_F = 10$ mA, $V_{CM} = 1500$ V, $V_{CC2} = 30$ V, $R_F = 2.1$ k $\Omega$ , $C_F = 1$ nF                  | 20,23      |
| Common mode transient immunity at low level output  | CML                       | 15  |   |   | kV/µs | $T_A = 25$ °C, $V_F = 0$ V, $V_{CM} = 1500$ V, $V_{CC2} = 30$ V, $R_F = 2.1$ k $\Omega$ , $C_F = 15$ pF                   | 21         |
|                                                     |                           | 50  |   |   | kV/µs | $T_A = 25$ °C, $V_F = 0$ V, $V_{CM} = 1500$ V, $V_{CC2} = 30$ V, $R_F = 2.1$ k $\Omega$ , $C_F = 1$ nF                    | <b>2</b> 1 |

- 1. All Typical values at TA = 25°C and VCC VEE = 30 V, VE VEE = 0V; unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.
- 2. Maximum pulse width =  $10 \mu s$ .

This value is intended to allow for component tolerances for designs with  $I_{\rm O}$  peak minimum = 4.0 A.

Derate linearly from 5.0 A at +25°C to 2.5 A at +105°C. This compensates for increased  $I_O$  PEAK due to changes in  $V_{OL}$  over

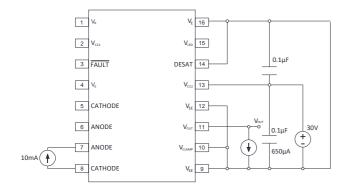
- 3. This supply is optional. Required only when negative gate drive is implemented.
- 4. Maximum pulse width =  $50 \mu s$ .
- 5. See the Slow IGBT Gate Discharge During Fault Condition section in the applications notes at the end of this data sheet for further details.



- 6. 15 V is the recommended minimum operating positive supply voltage ( $V_{CC2}$   $V_E$ ) to ensure adequate margin in excess of the maximum  $V_{UVLO+}$  threshold of 12.5V. For High Level Output Voltage testing, VOH is measured with a dc load current. When driving capacitive loads,  $V_{OH}$  will approach  $V_{CC}$  as  $I_{OH}$  approaches zero units.
- 7. Maximum pulse width = 1.0 ms.
- 8. Once  $V_O$  of the LTV-332J is allowed to go high ( $V_{CC2} V_E > V_{UVLO_+}$ ), the DESAT detection feature of the LTV-332J will be the primary source of IGBT protection. UVLO is needed to ensure DESAT is functional. Once  $V_{CC2}$  is increased from 0 V to above  $V_{UVLO_+}$ , DESAT will remain functional until  $V_{CC2}$  is decreased below  $V_{UVLO_-}$ . Thus, the DESAT detection and UVLO features of the LTV-332J work in conjunction to ensure constant IGBT protection.
- 9. See the DESAT fault detection blanking time section in the applications notes at the end of this data sheet for further details.
- 10. This is the "increasing" (i.e. turn-on or "positive going" direction) of  $V_{\text{CC2}}$   $V_{\text{E}}$
- 11. This is the "decreasing" (i.e. turn-off or "negative going" direction) of  $V_{CC2}$   $V_E$
- 12. This load condition approximates the gate load of a 1200 V/150A IGBT.
- 13. Pulse Width Distortion (PWD) is defined as |t<sub>PHL</sub> t<sub>PLH</sub>| for any given unit.
- 14. As measured from I<sub>F</sub> to V<sub>O</sub>.
- 15. The difference between t<sub>PHL</sub> and t<sub>PLH</sub> between any two LTV-332J parts under the same test conditions.
- 16. As measured from ANODE, CATHODE of LED to VOUT
- 17. This is the amount of time from when the DESAT threshold is exceeded, until the FAULT output goes low.
- 18. This is the amount of time the DESAT threshold must be exceeded before V<sub>OUT</sub> begins to go low, and the FAULT output to go low. This is supply voltage dependent.
- 19. Auto Reset: This is the amount of time when V<sub>OUT</sub> will be asserted low after DESAT threshold is exceeded. See the Description of Operation (Auto Reset) topic in the application information section.
- 20. Common mode transient immunity in the high state is the maximum tolerable  $dV_{CM}/dt$  of the common mode pulse,  $V_{CM}$ , to assure that the output will remain in the high state (i.e.,  $V_O > 15$  V or FAULT > 2 V).
- 21. Common mode transient immunity in the low state is the maximum tolerable  $dV_{CM}/dt$  of the common mode pulse,  $V_{CM}$ , to assure that the output will remain in a low state (i.e.,  $V_O < 1.0 \text{ V}$  or FAULT < 0.8 V).
- 22. To clamp the output voltage at  $V_{CC}$  3  $V_{BE}$ , a pull-down resistor between the output and  $V_{EE}$  is recommended to sink a static current of 650  $\mu$ A while the output is high. See the Output Pull-Down Resistor section in the application notes at the end of this data sheet if an output pull-down resistor is not used.
- 23. Split resistors network with a ratio of 1:1 is needed at input LED1. See Figure 13. together.



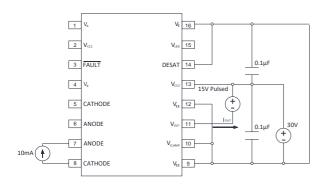
#### 6.5 PACKAGE CHARACTERISTICS


|                                   | Symbol           | Min. | Тур.            | Max. | Unit | Test Condition                                        | Note |
|-----------------------------------|------------------|------|-----------------|------|------|-------------------------------------------------------|------|
| Withstand Insulation Test Voltage | V <sub>ISO</sub> | 5000 | _               | _    | V    | RH $\leq$ 40-60%,<br>t = 1min, T <sub>A</sub> = 25°C, | 1, 2 |
| Input-Output Resistance           | R <sub>I-O</sub> | _    | 10 <sup>9</sup> | _    | Ω    | V <sub>I-O</sub> = 500 V DC                           | 1    |
| Input-Output Capacitance          | C <sub>I-O</sub> | _    | 1.3             | _    | pF   | f = 1MHz, T <sub>A</sub> = 25°C                       | 1    |

Note.1. According to UL1577, each Photocoupler is tested by applying an insulation test voltage 6000V<sub>RMS</sub> for 1 second (leakage current less than 10uA). This test is performed before the 100% production test for partial discharge

Note.2. This is a two-terminal measurement: pins 1-8 are shorted together and pins 9-16 are shorted together.




#### 7. TYPICAL TEST CIRCUITS



1 V<sub>s</sub> V<sub>E</sub> 16 2 V<sub>CC1</sub> V<sub>LED</sub> 15 0.1μF 3 FAULT DESAT 14 4 Vs V<sub>ccz</sub> 13 100mA V<sub>EE</sub> 12 (1 5 CATHODE 6 ANODE Vour 11 0.1μF 7 ANODE V<sub>CLAMP</sub> 10 8 CATHODE V<sub>EE</sub> 9

Figure 1 : Voн Test Circuit

Figure 2: Vol Test Circuit



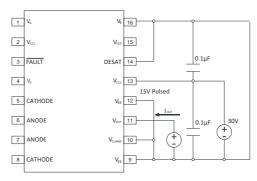



Figure 3: Іон Test Circuit

1 V<sub>s</sub> V<sub>E</sub> 16 2 V<sub>cc1</sub> V<sub>LED</sub> 15 3 FAULT <u>0.</u>1μF DESAT 14 4 V<sub>s</sub> V<sub>cc2</sub> 13 V<sub>EE</sub> 12 5 CATHODE 6 ANODE Vout 11 \_\_\_0.1μF 10 ANODE 10mA (†) V<sub>EE</sub> 9

Figure 4 : IoL Test Circuit

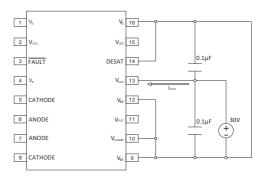
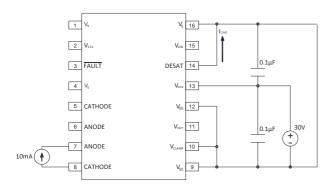




Figure 5 : Icc2H Test Circuit

Figure 6 : Icc2L Test Circuit





1 V<sub>s</sub> V<sub>E</sub> 16 7V 0.1μF 15 7V 0.1μF 15 CATHODE V<sub>E</sub> 12 0.1μF 10 0

Figure 7: ICHG Test Circuit

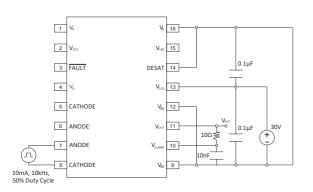
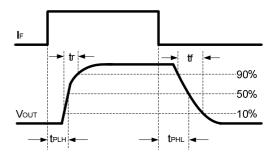




Figure 8: IDSCHG Test Circuit



I<sub>F</sub> = 10 mA

( f = 10k HZ,duty = 50%,tr = tf = 5ns or less)

Figure 9: tplh, tphL, tf, tr Test Circuit

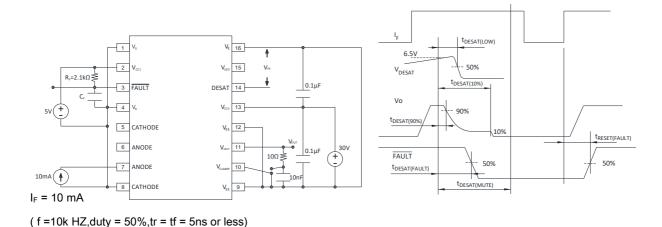



Figure 10: tdesat fault Test Circuit



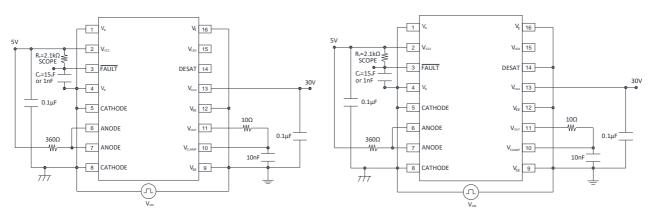



Figure 11: CMR Test Circuit LED2 ON

Figure 12: CMR Test Circuit LED2 OFF

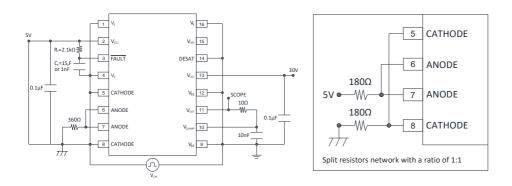



Figure 13: CMR Test Circuit LED1 ON

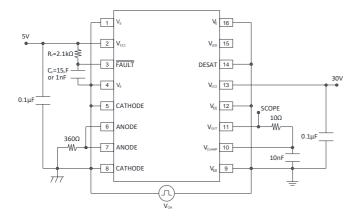
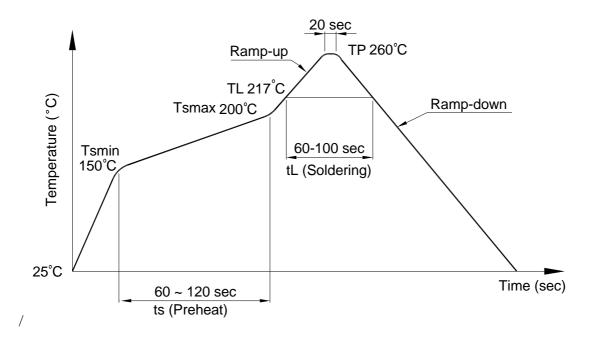



Figure 14: CMR Test Circuit LED1 OFF




#### 8. TEMPERATURE PROFILE OF SOLDERING

#### 8.1 IR Reflow soldering (JEDEC-STD-020C compliant)

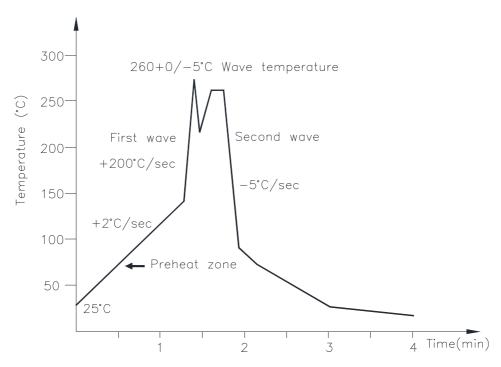
One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

| Profile item                           | Conditions     |  |  |  |
|----------------------------------------|----------------|--|--|--|
| Preheat                                |                |  |  |  |
| - Temperature Min (T <sub>Smin</sub> ) | 150°C          |  |  |  |
| - Temperature Max (T <sub>Smax</sub> ) | 200°C          |  |  |  |
| - Time (min to max) (ts)               | 90±30 sec      |  |  |  |
| Soldering zone                         |                |  |  |  |
| - Temperature (T <sub>L</sub> )        | 217°C          |  |  |  |
| - Time (t∟)                            | 60 ~ 100 sec   |  |  |  |
| Peak Temperature (T <sub>P</sub> )     | 260°C          |  |  |  |
| Ramp-up rate                           | 3°C / sec max. |  |  |  |
| Ramp-down rate                         | 3~6°C / sec    |  |  |  |





#### 8.2 Wave soldering (JEDEC22A111 compliant)


One time soldering is recommended within the condition of temperature.

Temperature: 260+0/-5°C

Time: 10 sec.

Preheat temperature:25 to 140°C

Preheat time: 30 to 80 sec.



#### 8.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature: 380+0/-5°C

Time: 3 sec max.

#### 9. Notes:

Specifications of the products displayed herein are subject to change without notice.

The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical instrumentation and application. For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.