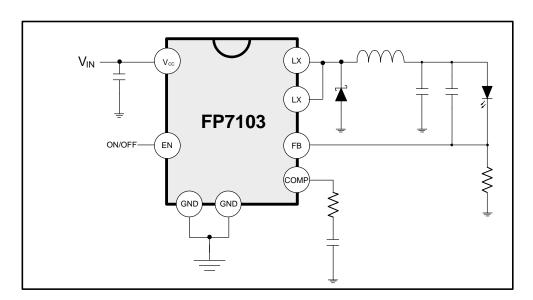


28V, 3A Buck Constant Current Switching Regulator for White LED

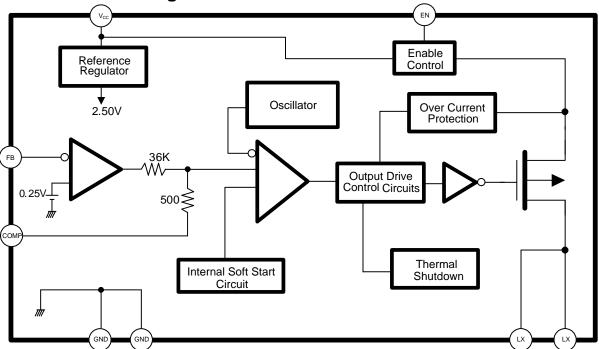

General Description

The FP7103 is a PWM control buck converter designed to provide a simple, high efficiency solution for driving high power LEDs. With a 0.25V reference voltage feedback control to minimize power dissipation, an external resistor sets the current as needed for driving various types of LEDs. The FP7103 includes a high current P-MOSFET to realize high efficiency and excellent transient characteristics. The PWM control circuit is able to change the duty ratio linearly from 0 up to 100%. Other features include user accessible EN pin for enabling, thermal shutdown, cycle-by-cycle current limit and over current protection.

Features

- Wide Supply Voltage Operating Range: 3.6 to 28V
- ➤ Built-in P-MOSFET for 3A Loading Capability
- Precision Feedback Reference Voltage: 0.25V (2%)
- ➤ Low Current Consumption: 4mA
- ➤ Internal Fixed Oscillator Frequency: 320KHz (Typ.)
- ➤ Internal Soft-Start Function (SS)
- Over Current Protection
- Package: SOP-8L& SOP-8L(EP)

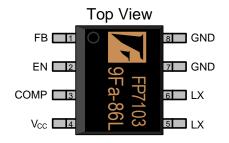
Typical Application Circuit



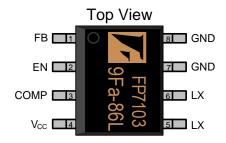
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

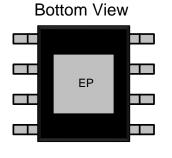
Website: http://www.feeling-tech.com.tw

Function Block Diagram



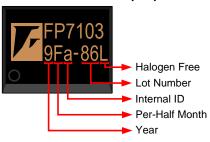
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.


Pin Descriptions


SOP-8L

Name	No.	1/0	Description	
FB	1	Ι	Error Amplifier Inverting Input	
EN	2	I	Enable Control	
COMP	3	0	Error Amplifier Compensation Output	
Vcc	4	Р	IC Power Supply (PMOS Source)	
LX	5	Р	PMOS High Current Output	
LX	6	Р	PMOS High Current Output	
GND	7	0	IC Ground	
GND	8	0	IC Ground	

SOP-8L (EP)



Name	No.	1/0	Description	
FB	1	Ι	Error Amplifier Inverting Input	
EN	2	I	Enable Control	
COMP	3	0	Error Amplifier Compensation Output	
Vcc	4	Р	IC Power Supply (PMOS Source)	
LX	5	Р	PMOS High Current Output	
LX	6	Р	PMOS High Current Output	
GND	7	0	IC Ground	
GND	8	0	IC Ground	
EP	9	Р	Exposed PAD. Must connect to LX	

Marking Information

SOP-8L & SOP-8L (EP)

Halogen Free: Halogen free product indicator **Lot Number**: Wafer lot number's last two digits

For Example Lot: 123456 → XXx-56L

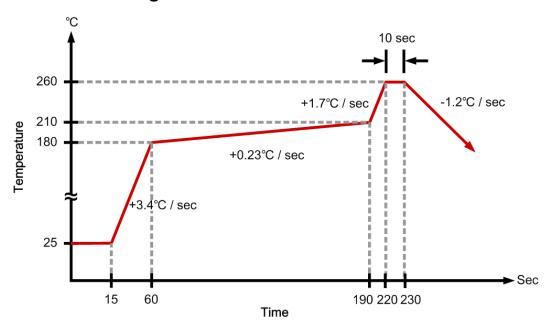
Internal ID: Internal Identification Code

Per-Half Month: Production period indicator in half month time unit

For Example : $A \rightarrow First Half Month of January$

 $\begin{array}{ll} B & \to Second \ Half \ Month \ of \ January \\ C & \to First \ Half \ Month \ of \ February \\ D & \to Second \ Half \ Month \ of \ February \\ \end{array}$

Year: Production year's last digit


Ordering Information

Part Number	Ambient Operating Temperature	Junction Operating Temperature	Package	MOQ	Description
FP7103DR-LF	-25°C ~ +85°C	-25°C ~ +125°C	SOP-8L	2500EA	Tape & Reel
FP7103XR-LF	-25°C ~ +85°C	-25°C ~ +125°C	SOP-8L (EP)	2500EA	Tape & Reel

Absolute Maximum Ratings

_				_		
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power Supply Voltage	V_{IN}				28	V
Output Source Current					3	Α
Error Amplifier Inverting Input			-0.3		+1.2	V
Allowable Dower Discinction	В	SOP-8L, T _A ≦+25°C			650	mW
Allowable Power Dissipation	P _D	SOP-8L (EP), T _A ≦+25°C			1500	mW
Thermal Resistance Junction to	θ_{JA}	SOP-8L			+110	°C / W
Ambient		SOP-8L (EP)			+60	°C / W
Thermal Resistance Junction to Case	θ _{JC}	SOP-8L			+55	°C / W
		SOP-8L (EP)			+10	°C / W
ECD Cuppontibility		HBM (Human Body Mode)		2		ΚV
ESD Susceptibility		MM (Machine Mode)		200		V
Storage Temperature			-55		+150	°C
Lead Temperature (soldering, 10 sec)					+260	°C

IR Re-flow Soldering Curve

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Website: http://www.feeling-tech.com.tw

Recommended Operating Conditions

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage	V_{IN}		3.6		28	V
Ambient Operating Temperature			-25		+85	°C
Junction Operating Temperature			-25		+125	°C

DC Electrical Characteristics (V_{CC}=6V, T_A= 25°C, unless otherwise noted)

		(-CC, -, -,,			,	
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Reference	_					
Output Voltage	V_{REF}	FB connected to COMP	0.245	0.25	0.255	V
Input Regulation	$\triangle V_{REF}$	V _{CC} = 3.6 V to 25 V		2	12.5	mV
Output Voltage Change with	△V _{REF} /	T _A = -25°C to +25°C		1	2	0/
Temperature	V_{REF}	$T_A = +25^{\circ}C$ to +85°C		1	2	%
Oscillator Section			1			ı
Oscillation Frequency	f			320		KHz
Frequency Change with Voltage	Δf / ΔV	V _{CC} =3.6V to 25V		5		%
Frequency Change with Temperature	Δf / ΔΤ	$T_A = -25^{\circ}C \text{ to } +85^{\circ}C$		5		%
Error Amplifier Section						
Input Bias Current	I _B		-1.0	-0.2	1.0	μΑ
Voltage Gain	Av			100		V/V
Frequency Bandwidth	BW	Av=0 dB		6		MHz
Output Voltage Swing Positive	V_{POS}		1.7	2		V
Output Voltage Swing Negative	V_{NEG}			0.1	0.2	V
Output Source Current	I _{SOURCE}	V _{comp} =200mV	-15	-30		μΑ
Output Sink Current	I _{SINK}	V _{comp} =200mV	15	30		μΑ
Idle Period Adjustment Secti	on					•
Maximum Duty Cycle	T_DUTY	V _{FB} =0.2V		100		%
Output Section						
PMOS D-S Voltage	V_{DSS}	V _{COMP} =0.1V		-20		V
PMOS Source Current	I _D			-3		Α
PMOS On Resistance	Ь	V _{CC} =5.0V, V _{FB} =0V		64	87	mΩ
PIVIOS On Resistance	R _{DS (ON)}	V _{CC} =10V, V _{FB} =0V		40	52	
Output Leakage Current	IL	VDS=-24V, VGS=0V			-1	μΑ
Thermal Shutdown Section						
Thermal shutdown Temperature				150		°C
Over Current Protection Sec	tion					
PMOS OCP Current	I _{OCP}			4		А
			_	_	_	_

Website: http://www.feeling-tech.com.tw Rev. 0.97

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Total Device Section						
EN Input Current	I _{EN}	EN pin Open			20	μA
Upper Threshold Voltage (EN)	V _{UPPER}			1.12		V
Lower Threshold Voltage (EN)	V_{LOW}			0.87		V
Hysteresis	V _{HYS}		210	250		mV
Average Supply Current	I _{AVE}			4	6	mA
V _{CC} Shutdown Current	I _{shutdown}			15		μA

Detailed Description

Voltage Reference

A built-in 2.5V reference regulator supplies FP7103 internal circuits. Also, this 2.5V reference voltage is divided down by an internal resistive divider to provide a 0.25V precision reference voltage to the error amplifier non-inverting terminal.

Setting the LED Current

FP7103 is a constant current buck regulator. The LEDs are connected between V_{OUT} and FB pin as shown in the **Typical Application Circuit** section. The FB pin is 0.25V in regulation. Therefore, the LEDs current I_F is set by V_{FB} and the resistor R_2 connected between FB and ground by the following equation:

$$I_{F} = \frac{V_{FB}}{R_{2}}$$

 I_{F} should not exceed the 3A current capability of FP7103 and therefore R_2 minimum must be approximately 0.083Ω

Output Voltage

The output voltage is primarily determined by the number of LEDs(n) connected between V_{OUT} and FB pin. Therefore, V_{OUT} can be written as:

$$V_{OUT} = ((n \times V_F) + V_{FB})$$

Where V_F is the forward voltage of one LED at the set LED current level (see LED manufacturer datasheet for forward characteristics curve)

Oscillator

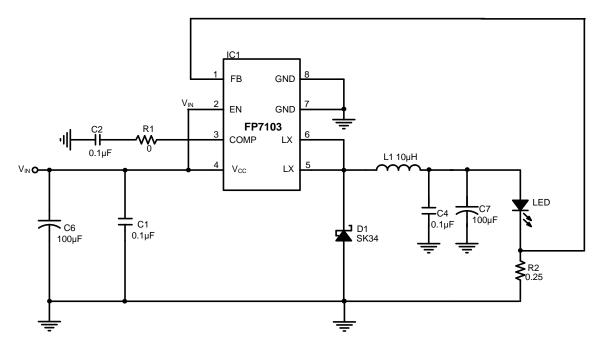
The fixed PWM frequency is generated by an internal oscillator. Its typical values are 320KHz.

Thermal Protection

The thermal protection is triggered when junction temperature is higher than 150°C that may occurs by an abnormal heavy current loading. When this happens, the FP7103 turns output off. Once the junction temperature is cooled down to lower than 130°C, FP7103 starts again and turns the power switch on.

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Website: http://www.feeling-tech.com.tw

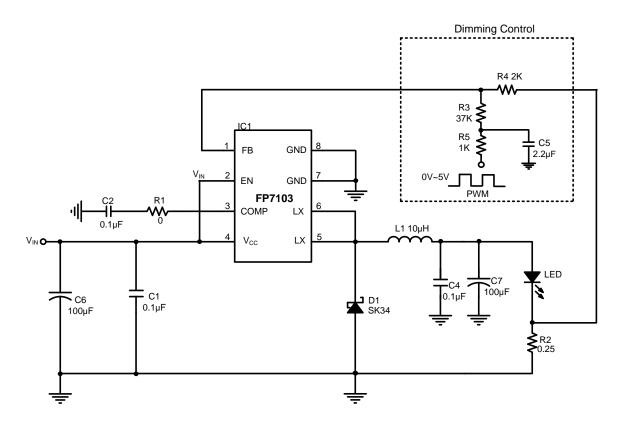

Over Current Protection

The FP7103 uses cycle-by-cycle current limit to protect the internal power switch. During each switching cycle, a current limit comparator detects if the power switch current exceeds the internal setting current. If it does, over current protection function decrease the oscillator frequency to prevent thermal issue.

Application Information

Typical Application Circuit

FP7103 3W / 5W LED for DC Input Circuit


This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Website: http://www.feeling-tech.com.tw

Dimming Control Circuit

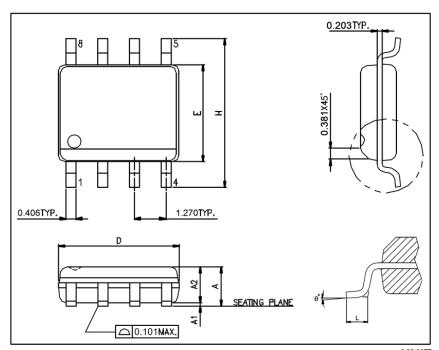
Changing the duty cycle of PWM signal can get different LED current. The PWM signal is recommended above 10kHz. The application circuit is shown in the following.

The LED current can be calculated by the following equation:

$$I_{LED} = \frac{V_{FB} - \frac{R4 \times (V_{PWM} \times Duty - V_{FB})}{R3 + R5}}{R2}$$

Notice:

- 1. Tapping reel aluminum foil bags after unpacking must be stored at ≤10% RH environment.
- 2. Tapping reel aluminum foil bags after unpacking must sure surface-mount is completed within 168 hours.


Website: http://www.feeling-tech.com.tw

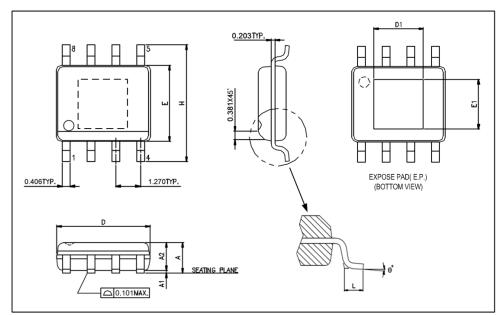
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Package Outline

SOP-8L

UNIT: mm

Symbols	Min. (mm)	Max. (mm)
Α	1.346	1.752
A1	0.101	0.254
A2		1.498
D	4.800	4.978
E	3.810	3.987
Н	5.791	6.197
L	0.406	1.270
θ°	0°	8°


Note:

- 1. Package dimensions are in compliance with JEDEC outline: MS-012 AA.
- 2. Dimension "D" does not include molding flash, protrusions or gate burrs.
- 3. Dimension "E" does not include inter-lead flash or protrusions.

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

SOP-8L (EP)

UNIT: mm

Symbols	Min. (mm)	Max. (mm)
A	1.346	1.752
A1	0.050	0.152
A2		1.498
D	4.800	4.978
Е	3.810	3.987
Н	5.791	6.197
L	0.406	1.270
θ°	0°	8°

Exposed PAD Dimensions:

Symbols	Min. (mm)	Max. (mm)		
E1	2.184 REF			
D1	2.971 REF			

Note:

- 1. Package dimensions are in compliance with JEDEC outline: MO-178 AA.
- 2. Dimension "D" does not include molding flash, protrusions or gate burrs.
- 3. Dimension "E" does not include inter-lead flash or protrusions

Website: http://www.feeling-tech.com.tw

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.