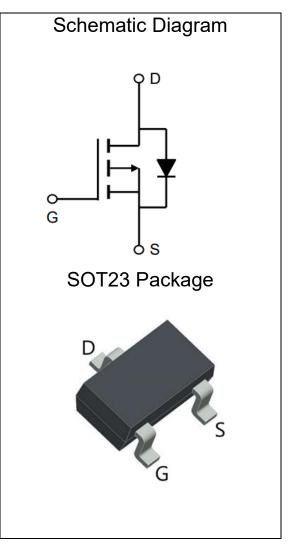


CHIPLINK P-Channel Enhancement Mode Power MOSFET

Description

The LX3407S combines advanced trench technology to provide excellent $R_{DS(ON)}$. This device is suitable for use as a load switch or other general applications.


Features

- V_{DS} = -30V, I_{D} = -4.2A $R_{DS(ON)}$ <55mΩ@VDS=-10V $R_{DS(ON)}$ <75mΩ@VDS=-4.5V
- Low gate charge
- High power and current handing capability
- Termination is Lead-free and RoHS Compliant

Applications

- PWM applications
- Load switch
- Power Management

Maximum Ratings(T_A=25 °C unless otherwise noted)

Parameter	Symbol	Maximum	Units
Drain-Source Voltage	V _{DS}	-30	V
Gate-Source Voltage	V _{GS}	±20	V
Continuous Drain Current	I _D	-4.2	Α
Pulsed Drain Current ^B	I _{DM}	-20	А
Maximum Power Dissipation ^A	P _D	1.4	W
Junction and Storage Temperature Range	T _J , T _{STG}	-55 To 150	$^{\circ}\!\mathbb{C}$

Thermal Characteristic

Electrical Characteristics (T_A=25 °C unless otherwise specified)

Parameter	Symbol	Test conditions	MIN	TYP	MAX	UNIT	
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =-250uA	-30			V	
Gate-Threshold Voltage	$V_{th(GS)}$	V_{DS} = V_{GS} , I_{D} =-250 uA	V _{DS} = V _{GS} , I _D =-250 uA -1.0		-2.5	V	
Gate-body Leakage	IGSS	$V_{DS}=0V$, $V_{GS}=\pm10V$			±100	nA	
Zero Gate Voltage Drain Current	IDSS	V _{DS} =-24V, V _{GS} =0V			-1	uA	
Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-4.2A		40	55	mΩ	
		V_{GS} =-4.5V, I_{D} =-4A		53	75	mΩ	
Forward Transconductance	g FS	V_{DS} =-5 V , I_{D} =-4.2 A		10		S	
Dynamic Characteristics							
Input Capacitance	C _{iss}	\\\\ 45\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		780		pF	
Output Capacitance	Coss	$V_{DS} = -15V, V_{GS} = 0V,$ F=1MHz		115			
Reverse Transfer Capacitance	C _{rss}	1 - 11VII 12		70			
Switching Capacitance							
Turn-on Delay Time	t _{d(on)}			8		nS	
Turn-on Rise Time	t _r	V_{DD} = -15V, I_{D} =-4.2A		4		nS	
Turn-off Delay Time	t _{d(off)}	$V_{GS} = -10V, R_{GEN} = 6\Omega$		29		nS	
Turn-off Fall Time	t _f			12		nS	
Total Gate Charge	Qg	$V_{DS} = -15V, I_{D} = -4.2A,$		13		nC	
Gate-Source Charge	Q _{gs}	V _{GS} =-4.5V		2.8		nC	
Gate-Drain Charge	Q_{gd}			3		nC	
Drain-Source Diode Characteristics							
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _D =-4.2A			-1.2	V	
Diode Forward Current	ls				-2	Α	

Notes:

- A. The Power dissipation P_D is based on T_{J(MAX)}=150 °C, using≤10s junction-to ambient thermal resistance.
- B. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150 °C.Ratings are based on low frequency and duty cycles to keep initial T_J =25 °C.
- C. The Static characteristics in Figures are obtained using \leq 300 μ s pulses, duty cycle 2% max.

Typical Electrical and Thermal Characteristics

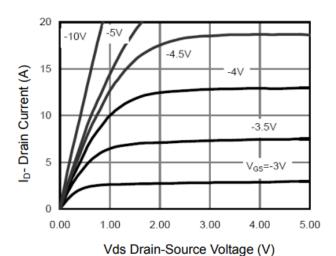


Figure 1: On-region Characteristics

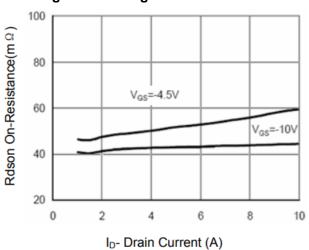


Figure 3: Drain-Source On-Resistance

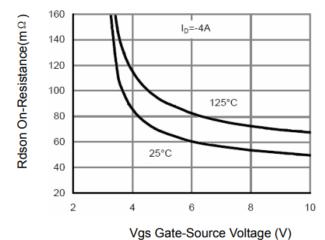
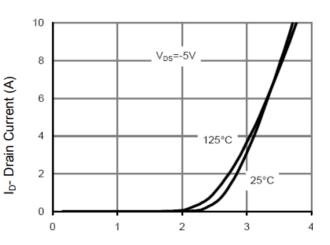
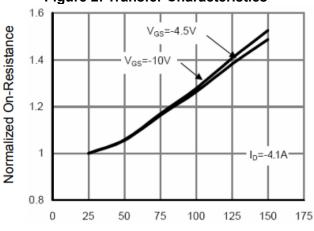




Figure 5: On-Resistance vs. Gate-Source Voltage

Vgs Gate-Source Voltage (V)

Figure 2: Transfer Characteristics

T_J-Junction Temperature(°C)

Figure 4: On-Resistance vs. Junction

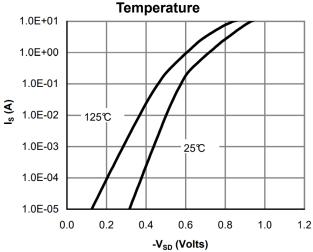


Figure 6: Body-Diode Characteristics

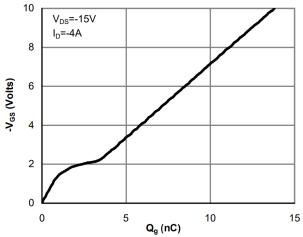
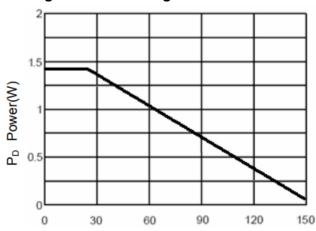



Figure 7: Gate-Charge Characteristics

T_J-Junction Temperature(°C)

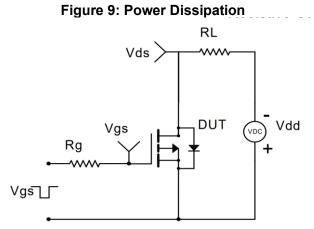


Figure 11: Switching Test Circuit

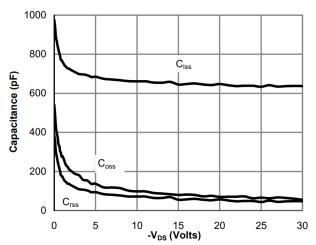


Figure 8: Capacitance Characteristics

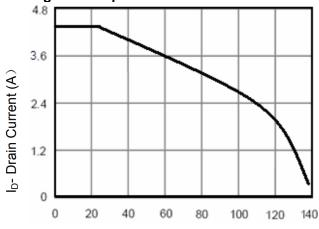


Figure 10: Drain Current

T_J-Junction Temperature(°C)

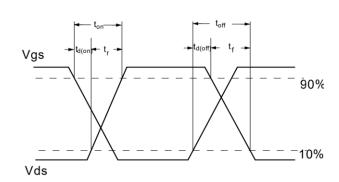


Figure 12: Switching Waveform

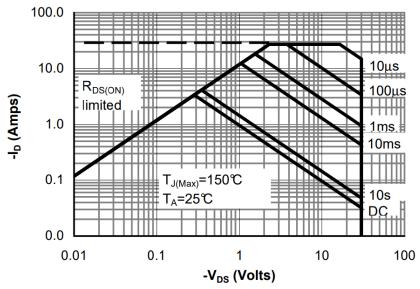


Figure 13: Safe Operation Area

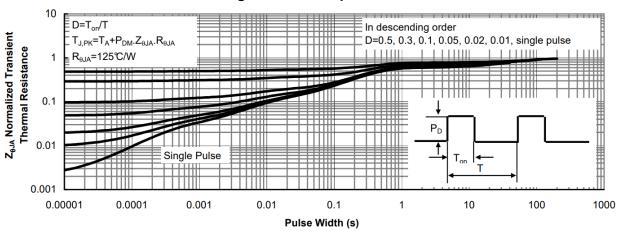
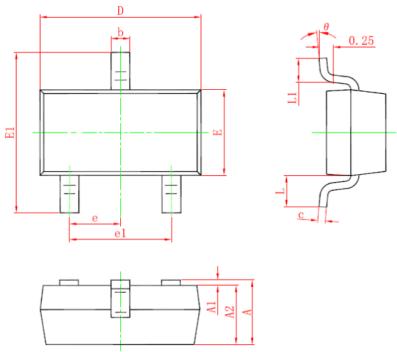



Figure 14: Normalized Maximum transient Thermal Impedance

SOT-23 Package Information

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
E	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950 TYP.		0.037 TYP.		
e1	1.800	2.000	0.071	0.079	
L	0.550 REF.		0.022 REF.		
L1	0.300	0.500	0.012	0.020	
θ	0°	8°	0°	8°	

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITIAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED.

CHIPLINK DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS.

THIS DOCUMENT SUPERSEDES AND REPLACES ALL INFORMATION PREVIOUSLY SUPPLIED. CHIPLINK RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.