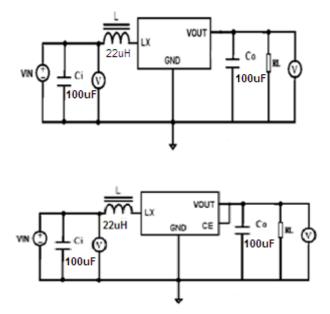


Synchronous PFM Step-up DC/DC Converter, ME2186 Series

General Description

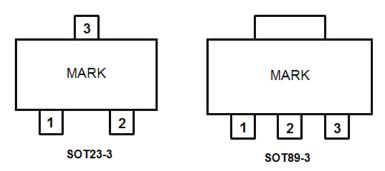
ME2186 Series is a Synchronous PFM Step-up DC/DC converter IC with low supply current by CMOS process. High frequency noise that occurs during switching is reduced by using advanced circuit designed, output voltage is programmable in 0.1V steps between 1.8~6.0V.A low ripple, high efficiency step-up DC/DC converter can be constructed of ME2186Xxx with only three external components. Also available is a CE (chip enable) function that reduce power dissipation during shut-down mode. ME2186Xxx is suitable for use with battery-powered instruments with low noise and low supply current.

Selection Guide


Features

- Low ripple and low noise
- Operating voltage range: 0.9V~6.0V
- Output voltage range: 1.8V~6.0V(step 0.1V)
- Output voltage accuracy: ±2%
- Output Current: If V_{IN}=3.0V and V_{OUT}=5.0V,then I_{OUT}=500mA
- Low start voltage: $\leq 0.9 \text{V(at I}_{\text{OUT}} = 1 \text{mA})$
- Maximum oscillator frequency: 330KHz (TYP. ME2186A50)
- Package: SOT23-3, SOT89-3

Typical Application


- Power source for battery-powered equipment
- Power source for wireless mouse, wireless keyboard, toys, cameras, camcorders, VCRs, PDAs, and hand-held communication equipment
- Power source for appliances which require higher cell voltage than that of batteries used in the appliances

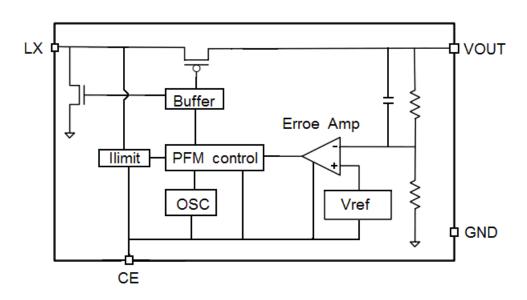
Typical Applications

Pin Configuration

Pin Assignment

TYPE	POSTFIX	PACKAGE	SWITCHING TRANSISTOR	CE FUNCTION	FEATURE
MEQUOCANI	M3	SOT23-3	Duild in Transister	NIa	Lx
ME2186Axx	Р	SOT89-3	Build in Transistor	No	

ME2186AXX


Pin Number		Pin Name	Description	
SOT23-3	SOT89-3			
1	1	GND	Ground	
3	2	VOUT	Output voltage monitor, IC internal power supply	
2	3	LX	Switch pin	

Absolute Maximum Ratings

PARAME		SYMBAL	RATING	UNIT	
V _{IN} Input V		V _{IN}	6.5	V	
Lx Pin vo		V_{LX}	6.5	V	
CE Pin voltage			V _{CE}	-0.3~ V _{OUT} +0.3	V
Lx Pin current	V _{OUT} =5.0V		I _{LX}	2000	mA
Vdd input v	oltage)	V_{dd}	6.5	V
Continuous Total Power Dissipation		SOT23-3	Pd	300	mW
Continuous Total I Owel Dissipa	ation	SOT89-3	Pd	500	mW
Operating Ambient Temperature			T_{Opr}	-25~+85	$^{\circ}$
Storage Temperature			T _{stg}	-40~+125	$^{\circ}$
Soldering temperature and time			T _{solder}	260℃, 10s	

Block Diagram

Electrical Characteristics

ME2186A50 F_{OSC}=330KHz

 $(V_{IN}=V_{OUT}\times 0.6,\ I_{OUT}=5mA,\ T=25^{\circ}C.$ Unless otherwise specified)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{OUT}	Output Voltage		$V_{OUT} imes$	V _{OUT}	V _{OUT} ×	V
			0.98		1.02	
V	Oscillation Start-up	I _{OUT} =1mA,		0.80	0.90	V
V_{START}	Voltage	V _{IN} : 0→2V	-			
V _{HOLD}	Oscillation Hold	I _{OUT} =1mA,		0.45	-	V
	Voltage	V _{IN} : 2→0V	-			
	Supply Current 1	No external component	-	205	-	μA
I _{DD1}		$V_{OUT}=V_{OUT}\times 0.95$,				
I _{DD2}	Supply Current 2	V _{OUT} =V _{OUT} +0.5V	-	8	-	μΑ
Fosc	Oscillation	V+V V0.05	-	330		171.1-
	Frequency	V _{OUT} =set V _{OUT} ×0.95			-	KHz
Maxduty	Duty Ratio	on(V _{LX} "L")side	-	79	-	%

Note 1. Inductor: $15\sim22\mu H$ (r<0.5 Ω)

2. Capacitor: Tantalum type 100μF

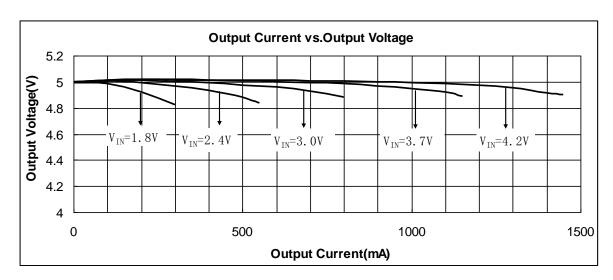
3. When you measure frequency and duty ratio, only to connect the resistance of 1.2K between L_X and $V_{OUT.}$

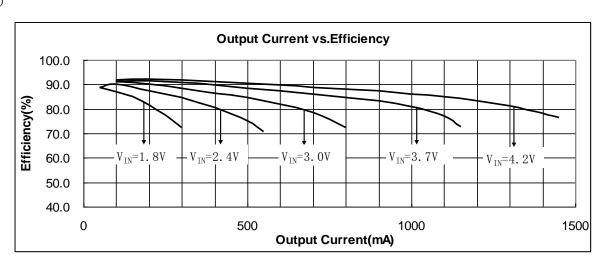
V04 <u>www.microne.com.cn</u> Page 3 of 8

Operation Description

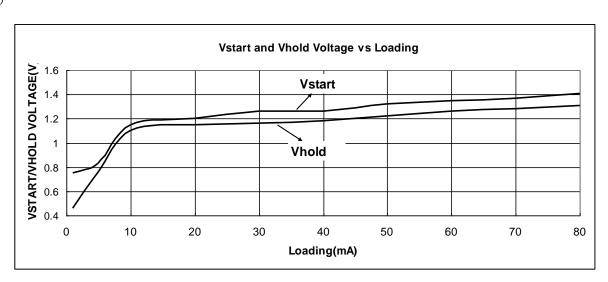
Selection of Peripheral Components and Application Notes

- Power source for battery-powered equipment
- Power source for wireless mouse, wireless keyboard, toys, cameras, camcorders, VCRs, PDAs, and hand-held communication equipment
- Power source for appliances which require higher cell voltage than that of batteries used in the appliances
- Peripheral components should be selected carefully because they are greatly affect the performances of ME2186:
 - ♦ Use capacitor with a capacity of 100µF or more (too small capacity will lead to high output ripple), and with good frequency characteristics (it is better to use Tantalum type). Besides, it is recommended the use of a capacitor with an allowable voltage which is at least three times the output set voltage. This is because there may be the case where a spike-shaped high voltage is generated by the inductor when Lx transistor is turned OFF.
 - Choose such an inductor that has sufficiently small d.c. resistance and large allowable current, and hardly reaches magnetic saturation. When the inductance value of the inductor is small, there may be the case where ILX exceeds the absolute maximum ratings at the maximum load.
 - ♦ Use a diode of a Schottky type with high switching speed.
- PCB Layout:
 - ♦ Set external components as close as possible to the IC and minimize the connection between the components and the IC. In particular, when an external component is connected to V_{OUT} Pin, make minimum connection with the capacitor.
 - ♦ Make Vss pin sufficient grounding, otherwise, the zero level within IC will varied with the switching current. This may result in unstable operation of IC.

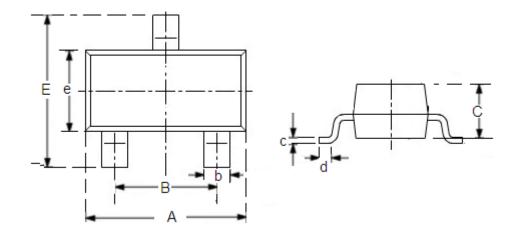

V04 www.microne.com.cn Page 4 of 8


Type Characteristics (Ta = 25 °C)

ME2186A50

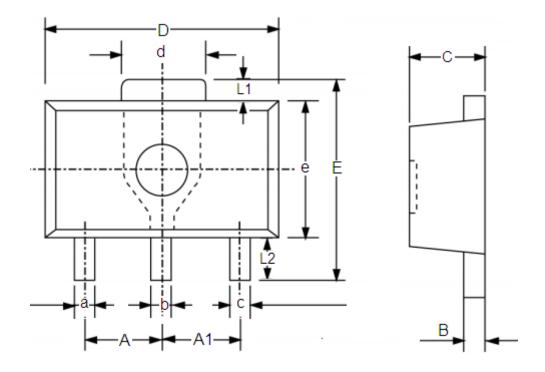

(1)

(2)


(3)

Packaging Information: Unit: mm (inch)

SOT23-3



DIM	Millim	eters	Inches		
	Min	Max	Min	Max	
А	2.7	3.1	0.1063	0.122	
В	1.7	2.1	0.0669	0.0827	
b	0.35	0.5	0.0138	0.0197	
С	1.0	1.2	0.0394	0.0472	
С	0.1	0.25	0.0039	0.0098	
d	0.2	-	0.0079	-	
E	2.6	3.0	0.1023	0.1181	
е	1.5	1.8	0.059	0.0708	

V04 <u>www.microne.com.cn</u> Page 6 of 8

• SOT-89-3

DIM	Millim	neters	Inches		
	Min	Max	Min	Max	
А	1.4	1.6	0.0551	0.0630	
A1	1.4	1.6	0.0551	0.0630	
а	0.36	0.48	0.0142	0.0189	
b	0.41	0.53	0.0161	0.0209	
С	0.36	0.48	0.0142	0.0189	
d	1.4	1.75	0.0551	0.0689	
В	0.38	0.43	0.015	0.0169	
С	1.4	1.6	0.0551	0.0630	
D	4.4	4.6	0.1732	0.181	
Е	-	4.25	-	0.1673	
е	2.4	2.6	0.0945	0.1023	
L1	0.4	-	0.0157	-	
L2	0.8	-	0.0315	-	

- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams
 described herein whose related industrial properties, patents, or other rights belong to third parties.
 The application circuit examples explain typical applications of the products, and do not guarantee the
 success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality
 and reliability, the failure or malfunction of semiconductor products may occur. The user of these
 products should therefore give thorough consideration to safety design, including redundancy,
 fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community
 damage that may ensue.