# ACPL-570xL, ACPL-573xL, ACPL-177xL, ACPL-675xL, 5962-08227 1



Hermetically Sealed 3.3V, Low  $I_F$ , Wide  $V_{CC}$ , High Gain Optocouplers

#### **Data Sheet**

#### **Description**

These devices are single, dual, and quad channel, hermetically sealed optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either commercial product or with full MIL-PRF-38534 Class Level H or K testing or from DLA Standard Microcircuit Drawing (SMD) 5962-08227. All devices are manufactured and tested on a MIL-PRF-38534 certified line and Class H and K devices are included in the DLA Qualified Products Database Supplemental Information Sheets QML-38534 as Hybrid Microcircuits.

Each channel contains a GaAsP light emitting diode that is optically coupled to an integrated high gain photon detector. The high gain output stage features an open collector output, providing both lower saturation voltage and higher signaling speed than possible with conventional photo-Darlington optocouplers.

The supply voltage can be operated as low as 3.0V without adversely affecting the parametric performance.

These devices have a 300% minimum CTR at an input current of only 0.5 mA, making them ideal for use in low input current applications such as MOS, CMOS, low-power logic interfaces, or line receivers.

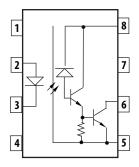
#### **CAUTION**

It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

 See Selection Guide — Package Styles and Lead Configuration Options for available extensions.

#### **Features**

- Low power consumption
- 3.3V supply voltages
- Dual marked with device part number and DLA Standard Microcircuit Drawing (SMD)
- Manufactured and tested on a MIL-PRF-38534 Certified Line
- QML-38534, Class H and K
- Three hermetically sealed package configurations
- Performance guaranteed over full military temperature range: -55°C to +125°C
- Low input current requirement: 0.5 mA
- High current transfer ratio: 1500% typical at  $I_F = 0.5 \text{ mA}$
- Low output saturation voltage: 0.11V typical
- 1500 Vdc withstand test voltage
- HCPL-4701/31, -070A/31 function compatibility


#### **Applications**

- Military and aerospace
- High reliability systems
- Telephone ring detection
- Microprocessor system interface
- Transportation, medical, and life critical systems
- Isolated input line receiver
- EIA RS-232-C line receiver
- Voltage level shifting
- Isolated input line receiver
- Isolated output line driver
- Logic ground isolation
- Harsh industrial environments
- Current loop receiver
- System test equipment isolation
- Process control input/output isolation

Package styles for these parts are 8- and 16-pin DIP through hole (case outlines P and E respectively), and 16-pin surface mount DIP flat pack (case outline F). Devices can be purchased with a variety of lead bend and plating options. See the Selection Guide — Package Styles and Lead Configuration Options table for details. Standard Military Drawing (SMD) parts are available for some package and lead styles.

Because the same electrical die (emitters and detectors) are used for each channel of each device listed in this data sheet, absolute maximum ratings, recommended operating conditions, electrical specifications, and performance characteristics shown in the figures are similar for all parts except as noted. Additionally, the same package assembly processes and materials are used in all devices. These similarities justify the use of a common data base for die related reliability.

#### **Functional Diagram**



#### **Truth Table**

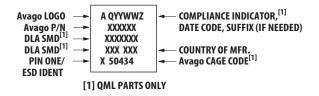
(Positive Logic)

| Input   | Output |
|---------|--------|
| On (H)  | L      |
| Off (L) | Н      |

**NOTE** The connection of a  $0.1-\mu F$  bypass capacitor between  $V_{CC}$  and GND is recommended.

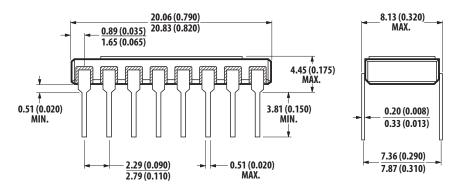
## **Selection Guide** — Package Styles and Lead Configuration Options

| Package                           | 16-Pin DIP            | 8-Pin DIP    | 8-Pin DIP             | 16-Pin Flat Pack      |
|-----------------------------------|-----------------------|--------------|-----------------------|-----------------------|
| Lead Style                        | Through Hole          | Through Hole | Through Hole          | Unformed leads        |
| Channels                          | 4                     | 1            | 2                     | 4                     |
| Common Channel Wiring             | V <sub>CC</sub> , GND | None         | V <sub>CC</sub> , GND | V <sub>CC</sub> , GND |
| Withstand Test Voltage            | 1500 Vdc              | 1500 Vdc     | 1500 Vdc              | 1500 Vdc              |
| Part Number and Options           |                       |              |                       |                       |
| Commercial                        | ACPL-1770L            | ACPL-5700L   | ACPL-5730L            | ACPL-6750L            |
| MIL-PRF-38534, Class H            | ACPL-1772L            | ACPL-5701L   | ACPL-5731L            | ACPL-6751L            |
| MIL-PRF-38534, Class K            | ACPL-177KL            | ACPL-570KL   | ACPL-573KL            | ACPL-675KL            |
| Standard Lead Finish <sup>a</sup> | Gold Plate            | Gold Plate   | Gold Plate            | Gold Plate            |
| Solder Dipped <sup>b</sup>        | Option -200           | Option -200  | Option -200           |                       |
| Butt Cut/Gold Plate <sup>a</sup>  | Option -100           | Option -100  | Option -100           |                       |
| Gull Wing/Soldered <sup>b</sup>   | Option -300           | Option -300  | Option -300           |                       |
| Class H SMD Part Number           |                       |              | <u> </u>              |                       |
| Prescript for all below           | 5962-                 | 5962-        | 5962-                 | 5962-                 |
| Gold Plate <sup>a</sup>           | 0822703HEC            | 0822701HPC   | 0822702HPC            | 0822704HZC            |
| Solder Dipped <sup>b</sup>        | 0822703HEA            | 0822701HPA   | 0822702HPA            |                       |
| Butt Cut/Gold Plate <sup>a</sup>  | 0822703HUC            | 0822701HYC   | 0822702HYC            |                       |
| Butt Cut/Soldered <sup>b</sup>    | 0822703HUA            | 0822701HYA   | 0822702HYA            |                       |
| Gull Wing/Soldered <sup>b</sup>   | 0822703HTA            | 0822701HXA   | 0822702HXA            |                       |

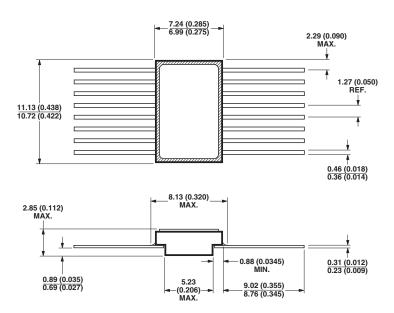

| Package                          | 16-Pin DIP | 8-Pin DIP  | 8-Pin DIP  | 16-Pin Flat Pack |
|----------------------------------|------------|------------|------------|------------------|
| Class K SMD Part Number          |            |            | <b>-</b>   |                  |
| Prescript for all below          | 5962-      | 5962-      | 5962-      | 5962-            |
| Gold Plate <sup>a</sup>          | 0822703KEC | 0822701KPC | 0822702KPC | 0822704KZC       |
| Solder Dipped*                   | 0822703KEA | 0822701KPA | 0822702KPA |                  |
| Butt Cut/Gold Plate <sup>a</sup> | 0822703KUC | 0822701KYC | 0822702KYC |                  |
| Butt Cut/Soldered <sup>b</sup>   | 0822703KUA | 0822701KYA | 0822702KYA |                  |
| Gull Wing/Soldered <sup>b</sup>  | 0822703KTA | 0822701KXA | 0822702KXA |                  |

- a. Gold Plate lead finish: Maximum gold thickness of leads is <100 micro inches. Typical is 60 to 90 micro inches.
- b. Solder lead finish: Sn63/Pb37.

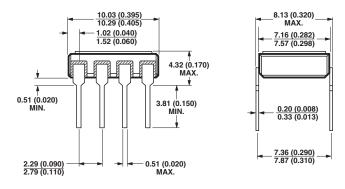
# **Functional Diagrams**


| 16-Pin DIP                                                    | 8-Pin DIP    | 8-Pin DIP    |
|---------------------------------------------------------------|--------------|--------------|
| Through Hole and Flat Pack                                    | Through Hole | Through Hole |
| 4 Channels                                                    | 1 Channel    | 2 Channels   |
| 1 16<br>2 15<br>3 14<br>4 13<br>5 10<br>6 11<br>7 7 10<br>8 9 | 7 7 6 6 5 5  |              |

## **Device Marking**

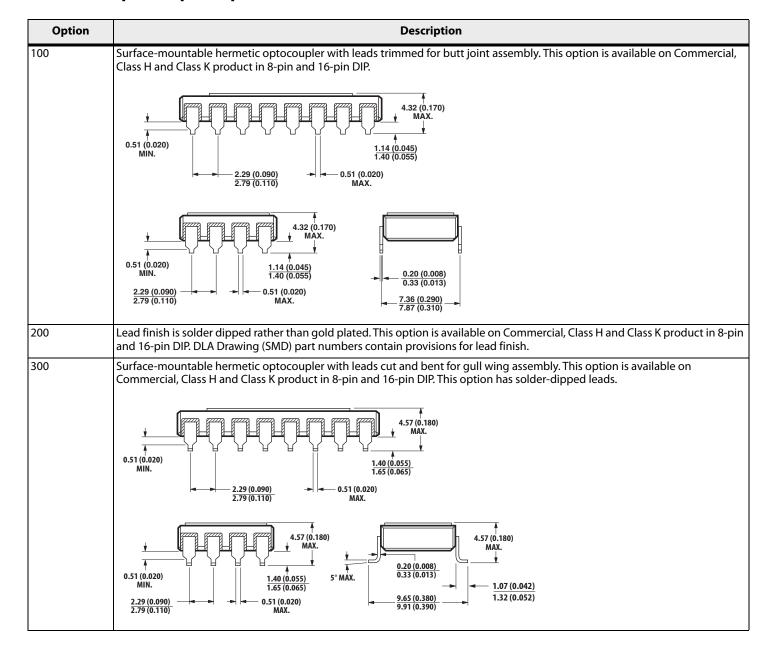



### **Outline Drawings**


#### 16-Pin DIP Through Hole, 4 Channels



#### 16-Pin Flat Pack, 4 Channels



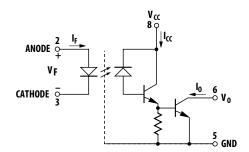

#### 8-Pin DIP Through Hole, 1 and 2 Channel



Note: Dimensions in Millimeters (Inches).

### **Hermetic Optocoupler Options**




### **Absolute Maximum Ratings**

| Parameter                                         | Symbol          | Min. | Max.           | Unit | Notes |
|---------------------------------------------------|-----------------|------|----------------|------|-------|
| Storage Temperature                               | T <sub>S</sub>  | -65  | +150           | °C   |       |
| Operating Temperature                             | T <sub>A</sub>  | -55  | +125           | °C   |       |
| Case Temperature                                  | T <sub>C</sub>  | _    | +170           | °C   |       |
| Junction Temperature                              | T <sub>J</sub>  | _    | +175           | °C   |       |
| Lead Solder Temperature                           |                 | _    | 260 for 10 sec | °C   |       |
| Output Current (Each Channel)                     | I <sub>O</sub>  | _    | 40             | mA   |       |
| Output Voltage (Each Channel)                     | V <sub>O</sub>  | -0.5 | 20             | V    | a     |
| Supply Voltage                                    | V <sub>CC</sub> | -0.5 | 20             | V    | a     |
| Output Power Dissipation (Each Channel)           |                 | _    | 50             | mW   | b     |
| Peak Input Current (Each Channel, <1 ms Duration) |                 | _    | 20             | mA   |       |
| Average Input Current (Each Channel)              | I <sub>F</sub>  | _    | 10             | mA   | С     |
| Reverse Input Voltage (Each Channel)              | V <sub>R</sub>  | _    | 5              | V    |       |
| Package Power Dissipation (Each Channel)          | P <sub>D</sub>  | _    | 200            | mW   |       |

a. GND pin should be the most negative voltage at the detector side. Keeping V<sub>CC</sub> as low as possible, but greater than 2.0V, will provide lowest total I<sub>OH</sub> over temperature.

c. Derate I<sub>F</sub> at 0.33 mA/°C above 110°C.

## 8-Pin Ceramic DIP Single-Channel Schematic



#### **ESD Classification**

(MIL-STD-883, Method 3015)

| ACPL-5700L/01L/0KL, 5962-0822701 | ▲▲, Class 2    |
|----------------------------------|----------------|
| ACPL-5730L/31L/3KL, 5962-0822702 | ▲▲A, Class 3A  |
| ACPL-1770L/2L/KL, 5962-0822703   | ▲▲AB, Class 3B |
| ACPL-6750L/1L/KL, 5962-0822704   | ▲▲A, Class 3A  |

b. Output power is collector output power plus total supply power for the single-channel device. For the dual-channel device, output power is collector output power plus one half the total supply power. For the quad-channel device, output power is collector output power plus one fourth of total supply power. Derate at 1.66 mW/°C above 110°C.

# **Recommended Operating Conditions**

| Parameter                                | Symbol              | Min. | Max. | Unit |
|------------------------------------------|---------------------|------|------|------|
| Input Current, Low Level (Each Channel)  | I <sub>F(OFF)</sub> | _    | 2.0  | μΑ   |
| Input Current, High Level (Each Channel) | I <sub>F(ON)</sub>  | 0.5  | 5    | mA   |
| Supply Voltage                           | V <sub>CC</sub>     | 3.0  | 7.0  | V    |
| Output Voltage                           | V <sub>O</sub>      | 3.0  | 7.0  | V    |

### **Electrical Characteristics**

 $T_A = -55$ °C to +125°C, unless otherwise specified.

|                                                    |                   |                  |                                                                                 | Group A <sup>a</sup> |      | Limits            |      |      |           | Note    |
|----------------------------------------------------|-------------------|------------------|---------------------------------------------------------------------------------|----------------------|------|-------------------|------|------|-----------|---------|
| Paramet                                            | er                | Symbol           | Test Conditions                                                                 | Subgroup             | Min. | Typ. <sup>b</sup> | Max. | Unit | Unit Fig. |         |
| Current Transfer Ratio                             | )                 | CTR              | $I_F = 0.5 \text{ mA}, V_O = 0.4 \text{V}, V_{CC} = 3.0 \text{V}$               | 1, 2, 3              | 300  | 1500              | _    | %    | 3         | c, d    |
|                                                    |                   |                  | $I_F = 1.6 \text{ mA}, V_O = 0.4V, V_{CC} = 3.0V$                               |                      | 300  | 1300              | _    |      |           |         |
|                                                    |                   |                  | $I_F = 5 \text{ mA}, V_O = 0.4V, V_{CC} = 3.0V$                                 |                      | 200  | 800               | _    | -    |           |         |
| Logic Low Output Vo                                | ltage             | V <sub>OL</sub>  | $I_F = 0.5 \text{ mA}, I_{OL} = 1.5 \text{ mA}, V_{CC} = 3.0 \text{V}$          | 1, 2, 3              | _    | 0.05              | 0.4  | V    | 2         | С       |
|                                                    |                   |                  | $I_F = 1.6 \text{ mA}, I_{OL} = 4.8 \text{ mA}, V_{CC} = 3.0 \text{V}$          | 1                    | _    | 0.06              | 0.4  |      |           | С       |
|                                                    |                   |                  | $I_F = 5 \text{ mA}, I_{OL} = 10 \text{ mA}, V_{CC} = 3.0 \text{V}$             | -                    | _    | 0.09              | 0.4  |      |           | С       |
| Logic High Output Co                               | urrent            | I <sub>OH</sub>  | $I_F = 2 \mu A, V_O = 7V, V_{CC} = 7V$                                          | 1, 2, 3              | _    | 1.0               | 100  | μΑ   |           | С       |
|                                                    |                   | I <sub>OHX</sub> |                                                                                 |                      |      | 1.0               | 100  | μΑ   |           | c, e    |
| Logic Low Supply<br>Current                        | Single<br>Channel | I <sub>CCL</sub> | $I_F = 1.6 \text{ mA}, V_{CC} = 7V$                                             | 1, 2, 3              | _    | 0.8               | 2    | mA   |           |         |
|                                                    | Dual<br>Channel   |                  | $I_{F1} = I_{F2} = 1.6 \text{ mA}, V_{CC} = 7V$                                 |                      | _    | 0.8               | 4    | •    | 4         |         |
|                                                    | Quad<br>Channel   |                  | $I_{F1} = I_{F2} = I_{F3} = I_{F4} = 1.6 \text{ mA},$<br>$V_{CC} = 7 \text{ V}$ |                      | _    | 1.3               | 4    |      |           |         |
| Logic High Supply<br>Current                       | Single<br>Channel | I <sub>CCH</sub> | $I_F = 0 \text{ mA}, V_{CC} = 7V$                                               | 1, 2, 3              | _    | 0.01              | 20   | μΑ   |           |         |
|                                                    | Dual<br>Channel   |                  | $I_{F1} = I_{F2} = 0 \text{ mA}, V_{CC} = 7V$                                   |                      | _    |                   | 40   |      |           |         |
|                                                    | Quad<br>Channel   |                  | $I_{F1} = I_{F2} = I_{F3} = I_{F4} = 0 \text{ mA},$<br>$V_{CC} = 7V$            |                      | _    |                   | 40   |      |           |         |
| Input Forward Voltag                               | e                 | V <sub>F</sub>   | I <sub>F</sub> = 1.6 mA                                                         | 1, 2, 3              | 1.0  | 1.4               | 1.8  | V    | 1         | с       |
| Input Reverse Breakd                               | own Voltage       | B <sub>VR</sub>  | Ι <sub>R</sub> = 10 μΑ                                                          | 1, 2, 3              | 5    | _                 | _    | V    |           | С       |
| Input-Output Insulation Leakage   I <sub>I-C</sub> |                   | I <sub>I-O</sub> | $\leq$ 65% Relative Humidity, $T_A = 25$ °C, $t = 5$ s, $V_{I-O} = 1500$ VDC    | 1                    | _    | _                 | 1.0  | μΑ   |           | f, g    |
| Capacitance Betweer<br>Input-Output                | 1                 | C <sub>I-O</sub> | f = 1 MHz, T <sub>A</sub> = 25°C                                                | 4                    | _    | _                 | 4    | pF   |           | c, h, i |

| Parameter                                              | Cymhal           | Test Conditions                                                                                   | Group A <sup>a</sup> | Group A <sup>a</sup> Limits |                   |      | Unit |               | Note       |
|--------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------|----------------------|-----------------------------|-------------------|------|------|---------------|------------|
| Parameter                                              | Symbol           | rest Conditions                                                                                   | Subgroup             | Min.                        | Typ. <sup>b</sup> | Max. | Onit | Fig.          | Note       |
| Propagation Delay Time to Logic<br>Low at Output       | t <sub>PHL</sub> | $I_F = 0.5 \text{ mA}, R_L = 2.2 \text{ k}\Omega, V_{CC} = 3.3 \text{ V}$                         | 9, 10, 11            | _                           | 40                | 100  | μs   | 5, 6,<br>7, 8 | С          |
| Low at Output                                          | t <sub>PHL</sub> | $I_F = 1.6 \text{ mA}, R_L = 680\Omega, V_{CC} = 3.3V$                                            | 9, 10, 11            | _                           | 9                 | 30   |      | 7,0           | С          |
|                                                        | t <sub>PHL</sub> | $I_F = 5 \text{ mA}, R_L = 330\Omega, V_{CC} = 3.3V$                                              | 9                    | 1                           | 2                 | 5    |      |               | С          |
|                                                        |                  |                                                                                                   | 10, 11               | 1                           | 2                 | 10   |      |               |            |
| Propagation Delay Time to Logic<br>High at Output      | t <sub>PLH</sub> | $I_F = 0.5 \text{ mA}, R_L = 2.2 \text{ k}\Omega, V_{CC} = 3.3 \text{ V}$                         | 9, 10, 11            | _                           | 10                | 60   | μs   | 5, 6,<br>7, 8 | С          |
| riigirat Output                                        | t <sub>PLH</sub> | $I_F = 1.6 \text{ mA}, R_L = 680\Omega, V_{CC} = 3.3V$                                            | 9, 10, 11            | _                           | 8                 | 50   |      | 7,0           | С          |
|                                                        | t <sub>PLH</sub> | $I_F = 5 \text{ mA}, R_L = 330\Omega, V_{CC} = 3.3V$                                              | 9                    |                             | 6                 | 20   |      |               | С          |
|                                                        |                  |                                                                                                   | 10, 11               |                             |                   | 30   |      |               |            |
| Common Mode Transient<br>Immunity at Low Output Level  | CM <sub>L</sub>  | $V_{CC} = 3.3V$ , $I_F = 1.6$ mA, $R_L = 680\Omega$ , $ V_{CM}  = 50 V_{P-P}$                     | 9, 10, 11            | 500                         | 1000              | _    | V/µs | 9             | c, j, k, i |
| Common Mode Transient<br>Immunity at High Output Level |                  | $V_{CC} = 3.3 \text{ V, I}_F = 0 \text{ mA, R}_L = 680\Omega,$<br>$ V_{CM}  = 50 \text{ V}_{P-P}$ | 9, 10, 11            | 500                         | 1000              | _    | V/µs | 9             | c, j, k, i |

- a. Commercial parts receive 100% testing at 25°C (Subgroups 1 and 9). SMD and 883B parts receive 100% testing at 25, 125, and –55°C (Subgroups 1 and 9, 2 and 10, 3 and 11, respectively).
- b. All typical values are at  $V_{CC} = 3.3V$ ,  $T_A = 25$ °C.
- c. Each channel.
- d. Current Transfer Ratio is defined as the ratio of output collector current, I<sub>O</sub>, to the forward LED input current, I<sub>F</sub>, times 100%.
- e.  $I_{OHX}$  is the leakage current resulting from channel-to-channel optical crosstalk.  $I_F = 2 \mu A$  for channel under test. For all other channels,  $I_F = 10 \mu A$ .
- f. All devices are considered two-terminal devices; measured between all input leads or terminals shorted together and all output leads or terminals shorted together.
- g. This is a momentary withstand test, not an operating condition.
- h. Measured between each input pair shorted together and all output connections for that channel shorted together.
- i. Parameters tested as part of device initial characterization and after design and process changes. Parameters guaranteed to limits specified for all lots not specifically tested.
- j.  $CM_L$  is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic low state ( $V_O < 0.8V$ ).  $CM_H$  is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic high state ( $V_O > 2.0V$ ).
- k. In applications where dV/dt may exceed 50,000 V/μs (such as a static discharge), a series resistor, R<sub>CC</sub>, should be included to protect the detector ICs from destructively high surge currents. The recommended value is:

For single channel:

$$R_{CC} = \frac{1(V)}{0.15 I_F (mA)} k\Omega$$

For dual channel:

$$R_{CC} = \frac{1 (V)}{0.3 \ I_F (mA)} \ k\Omega$$

For quad channel:

$$R_{CC} = \frac{1(V)}{0.6 I_{E} (mA)} k\Omega$$

# **Typical Characteristics**

 $T_A = 25$ °C

| Parameter                           | Symbol                  | Тур.             | Unit  | Test Conditions                                                     | Note |
|-------------------------------------|-------------------------|------------------|-------|---------------------------------------------------------------------|------|
| Input Capacitance                   | C <sub>IN</sub>         | 60               | pF    | $V_F = 0V, f = 1 MHz$                                               | a    |
| Input Diode Temperature Coefficient | $\Delta V_F/\Delta T_A$ | -1.8             | mV/°C | I <sub>F</sub> = 1.6 mA                                             | a    |
| Resistance (Input-Output)           | R <sub>I-O</sub>        | 10 <sup>12</sup> | Ω     | V <sub>I-O</sub> = 500V                                             | a, b |
| Capacitance (Input-Output)          | C <sub>I-O</sub>        | 2.0              | pF    | f = 1 MHz                                                           | a, b |
| Dual and Quad Channel Product Only  |                         |                  |       |                                                                     |      |
| Input-Input Leakage Current         | I <sub>I-I</sub>        | 0.5              | nA    | Relative Humidity = $\leq$ 65%,<br>V <sub>I-I</sub> = 500V, t = 5 s | С    |
| Resistance (Input-Input)            | R <sub>I-I</sub>        | 10 <sup>12</sup> | Ω     | V <sub>I-I</sub> = 500V                                             | С    |
| Capacitance (Input-Input)           | C <sub>I-I</sub>        | 1.0              | pF    | f = 1 MHz                                                           | С    |

a. Each channel.

b. Measured between each input pair shorted together and all output connections for that channel shorted together.

c. Measured between adjacent input pairs shorted together for each multichannel device.

Figure 1 Input Diode Forward Current vs. Forward Voltage

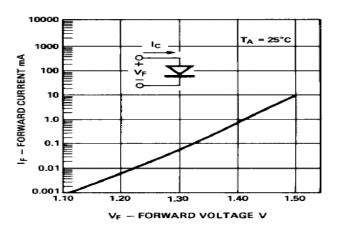



Figure 3 Normalized Current Transfer Ratio vs. Input Diode Forward Current

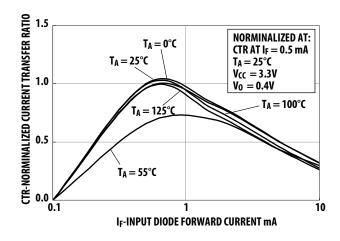
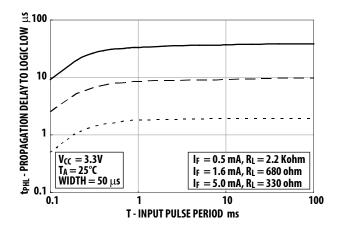




Figure 5 Propagation Delay to Logic Low vs. Input Pulse Period



**Figure 2 Normalized DC Transfer Characteristics** 

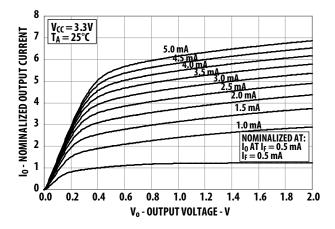



Figure 4 Normalized Supply Current vs. Input Diode Forward Current

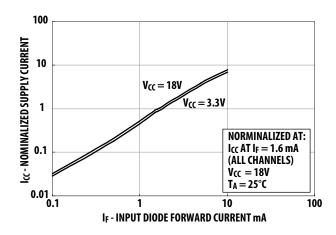
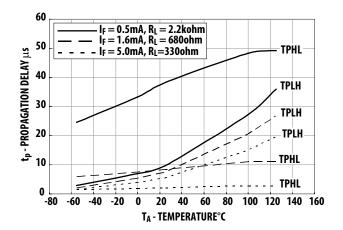
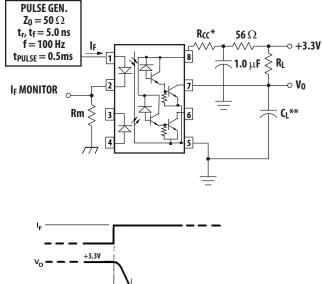
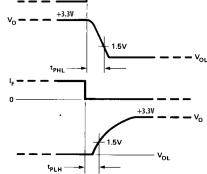






Figure 6 Propagation Delay vs. Temperature



**Figure 8 Switching Test Circuit** 





- \* See Electrical Characteristics, footnote k.
- \*\* C<sub>1</sub> includes probe and stray wiring capacitance.

Figure 7 Propagation Delay vs. Input Diode Forward Current

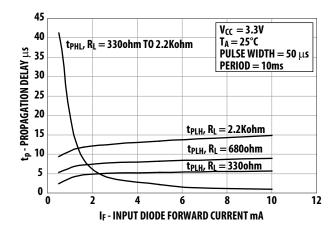
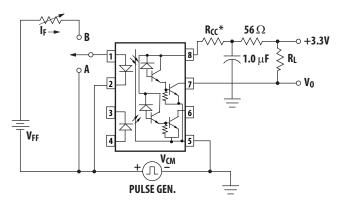
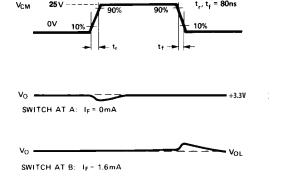





Figure 9 Test Circuit for Transient Immunity and Typical Waveforms



\* SEE NOTE 11



<sup>\*</sup> See Electrical Characteristics, footnote k.

Figure 10 Recommended Drive Circuitry Using TTL Open-Collector Logic

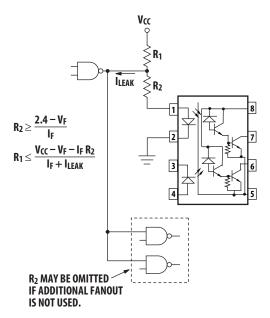
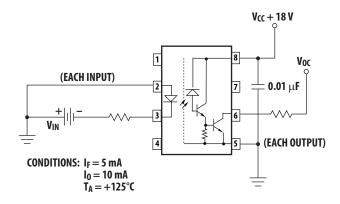




Figure 11 Operating Circuit for Burn-In and Steady State Life Tests



\* ALL CHANNELS TESTED SIMULTANEOUSLY.

For product information and a complete list of distributors, please go to our web site: www.broadcom.com.

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom in the United States, certain other countries and/or the EU.

Copyright © 2005-2019 Broadcom. All Rights Reserved.

The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design.

Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

AV02-1819EN - January 11, 2019

