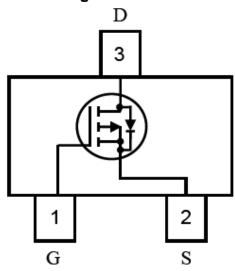


P-Channel MOSFET MEM2301M3

General Description

MEM2301M3G Series P-channel enhancement mode field-effect transistor ,produced with high cell density DMOS trench technology, which is especially used to minimize on-state resistance. This device particularly suits low voltage applications, and low power dissipation, and low power dissipation in a very small outline surface mount package.

Features


-20V/-2.8A

 $R_{DS(ON)} = 93m\Omega@V_{GS} = -4.5V, I_D = -2.8A$

 $R_{DS(ON)} = 113m\Omega@V_{GS} = -2.5V, I_D = -2A$

- High Density Cell Design For Ultra Low On-Resistance
- Subminiature surface mount package:SOT23-3L

Pin Configuration

Typical Application

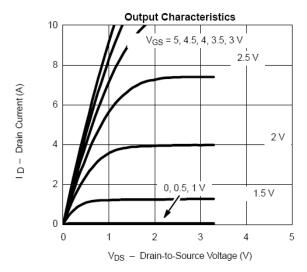
- Power management
- Load switch
- Battery protection

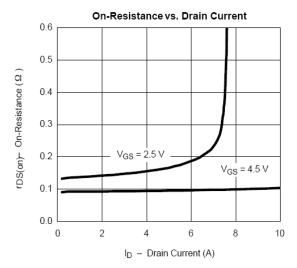
Absolute Maximum Ratings

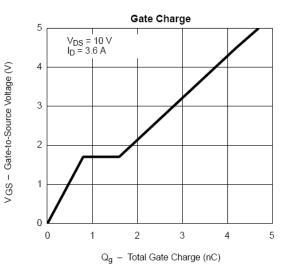
Parameter	Symbol	Ratings	Unit	
Drain-Source Voltage		V_{DSS}	-20	V
Gate-Source Voltage		V_{GSS}	±8	V
Continuous Drain Current	T _A =25℃		-2.8	А
	T _A =70°C	l _D	-1.8	
Pulsed Drain Curr	I _{DM}	-10	Α	
Total Power Dissipation	T _A =25℃	В	0.7	10/
	T _A =70°C	P _D	0.45	W
Operating Temperature Range		T _{Opr}	150	${\mathbb C}$
Storage Temperature Range		T _{stg}	-65/150	$^{\circ}$

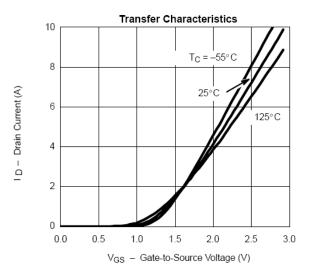
Thermal Characteristics

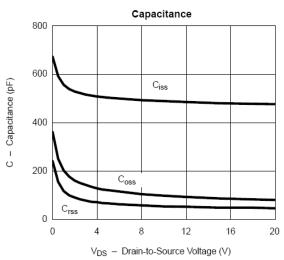
Parameter	Symbol	MAX.	Unit
Thermal Resistance, Junction-to-Ambient ³	$R_{ heta JA}$	145	°C/W

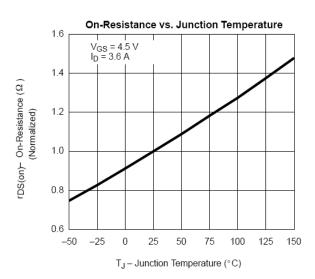

Electrical Characteristics

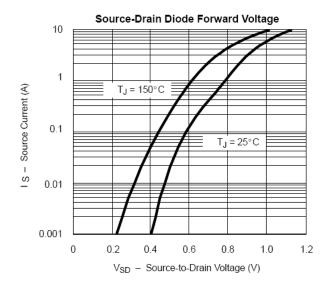

Parameter	Symbol	Test Condition	Min	Туре	Max	Unit		
Static Characteristics								
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	V_{GS} =0V, I_D =-250uA	-20	-23		V		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -250uA$	-0.4	0.58	-1	V		
Gate-Body Leakage	I _{GSS}	$V_{DS}=0V$, $V_{GS}=8V$		0.2	100	nA		
		$V_{DS}=0V$, $V_{GS}=-8V$		-0.2	-100	nA		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-16V V _{GS} =0V		-1.5	-100	nA		
Static Drain-Source On-Resistance	R _{DS(ON)1}	V _{GS} =-4.5V,I _D =-2.8A		93	110	mΩ		
	R _{DS(ON)2}	V _{GS} =-2.5V,I _D =-2A		113	140	mΩ		
Forward Transconductance	g FS	$V_{DS} = -5 \text{ V}, I_{D} = -2.8 \text{ A}$		6.5		S		
Source-drain (diode forward) voltage	V _{SD}	V _{GS} =0V,I _S =-1A			-1.2	V		
	Dy	namic Characteristics						
Input Capacitance	Ciss	$V_{DS} = -6V$,		500		pF		
Output Capacitance	Coss	$V_{GS} = 0 V$,		115				
Reverse Transfer Capacitance	Crss	f = 1 MHz		60				
	Sw	itching Characteristics						
Turn-On Delay Time	td(on)	$V_{DD} = -6 V$,		5	25	ns		
Rise Time	tr	I _D =-1 A,		30	60			
Turn-Off Delay Time	td(off)	$V_{GEN} = -4.5 V$,		25	60			
Fall-Time	tf	Rg = 6 Ω		10	60			
Total Gate Charge	Qg	$V_{DS} = -6 V$,		4.0	10			
Gate-Source Charge	Qgs	$V_{GS} = -4.5 \text{ V},$		0.8		nc		
Gate-Drain Charge	Qgd	$I_D = -2.8A$		0.8				

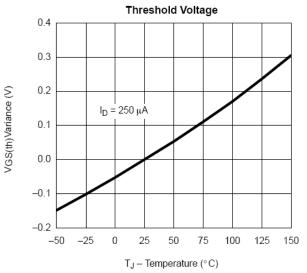

- 1. Pulse width limited by maximum junction temperature.
- 2. Pulse test: PW \leq 300 us duty cycle \leq 2%.
- 3. Surface Mounted on FR4 Board, t $\, \leqslant \, 5$ sec.

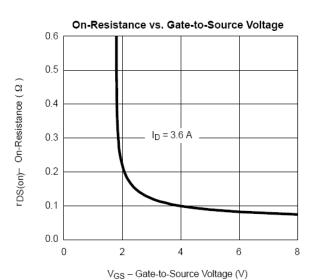


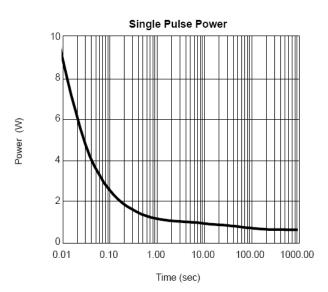

Typical Performance Characteristics

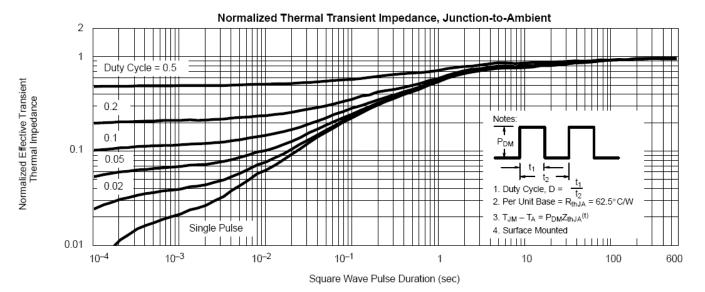


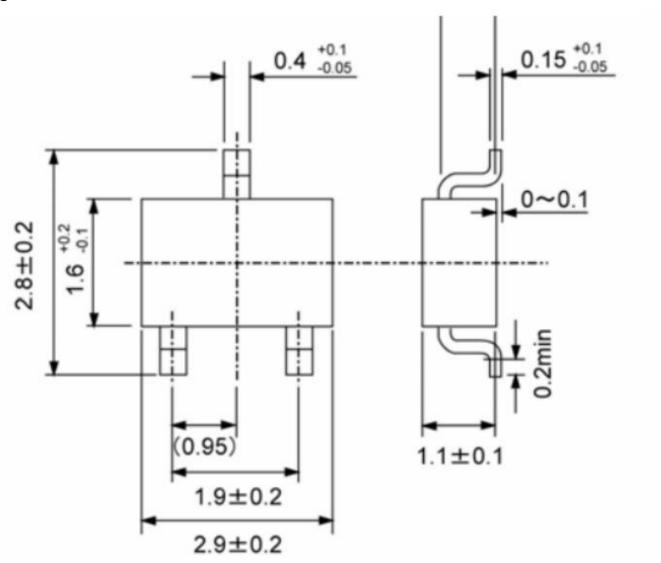












Package Information

- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams
 described herein whose related industrial properties, patents, or other rights belong to third parties.
 The application circuit examples explain typical applications of the products, and do not guarantee the
 success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality
 and reliability, the failure or malfunction of semiconductor products may occur. The user of these
 products should therefore give thorough consideration to safety design, including redundancy,
 fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community
 damage that may ensue.