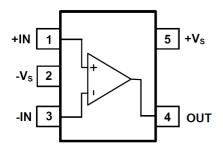


■ Low Power Single Operational Amplifier


Description

LM321 (single channel) is a rail-to-rail input, output voltage feedback, low power consumption operational amplifier. It has wide input common mode voltage and output swing. The minimum working voltage can be up to 2.1V, and the maximum working voltage is recommended to be 5.5V. Used as power amplifier in all kinds of pocket or portable stereo radio recorders. LM321 has the following characteristics:Can provide 1MHz gain bandwidth product. It has an extremely low input bias current (about 10pA level) and can be used for integration, photodiode amplifiers and piezoelectric sensors. The Rail to Rail input and output buffers are also used for specific IC designs in single power systems. Applications of this series of amplifiers include safety monitoring, portable devices, batteries and power supplies, supply control, signal processing and interfaces in low power sensor systems.

5.+V_s 4.OUT

■ Simplified outline(SOT23-5)

Pin arrangement diagram

Marking

Marking	321

Features

- Rail to rail input and output, typical 0.8mv Vos
- Gain bandwidth product 1MHz
- Low input bias current: 10pA Level, <1nA
- Low Power consumption
- 2.1v ~ 5.5v working voltage
- Low operating current: 60uA

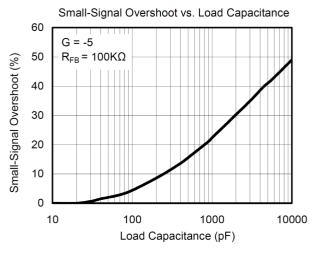
Applications

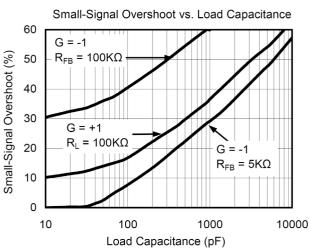
- ASIC input and output amplifier
- Sensor interface
- Piezoelectric sensing amplifier
- Battery-powered equipment
- The mobile communication
- Audio output

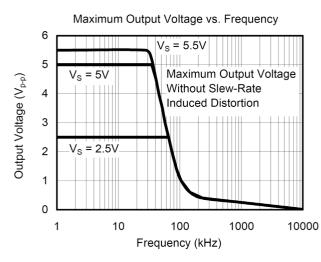
■ Absolute Maximum Ratings Ta = 25 °C

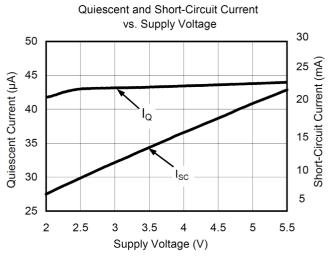
Parameter	Symbol	Value	Units
Supply Voltage	Vcc	7.5	V
Common-mode Input Voltage	Vicr	-0.5~0.5	V
Junction Temperature	TJ	150	°C
Operating Temperature Range	T _{OPR}	0 to 70	°C
Lead Temperature (Soldering, 10 sec)	TL	250	°C
Storage Temperature Range	TstG	-50 to 150	°C

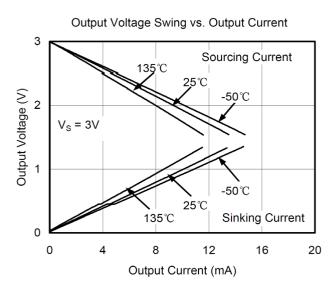
Note1: Exceeding the above limits may damage to the chip. The reliability of the device will also be affected if the device works under the limit conditions. Electrostatic discharge can also cause damage to chips, so it is suggested to take some preventive measures for integrated circuits. Failure to follow proper handling and installation can also cause damage. Precision LMV321 and other devices are more vulnerable to damage than ordinary devices in the case of tiny electrostatic, and small parameter changes may make the whole circuit performance substandard.

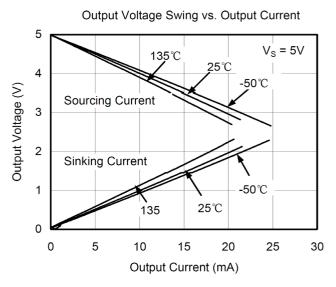

■ ElectricalCharacteristics

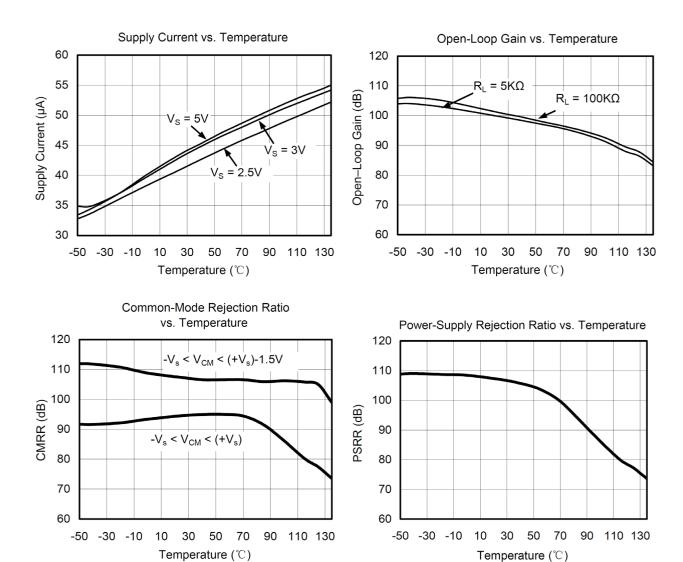

At R_L = $100k\Omega$ connected to Vs/2,and V_{OUT} = Vs/2,Ta=25°C) , unless otherwise noted.

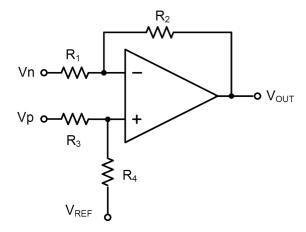

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Offset Voltage	Vos			±0.8	±5	mV
Input offset current	los			10		pA
Input bias current	lв			10		pА
Common-mode input voltage range	V _{СМ}	Vs=5.5V		-0.1~5.6		V
Open-loop Gain	A 01	Vo=0.1V to 4.9 V, R _L =5 k Ω	70	80		dB
	AOL	Vo=0.035V to 4.96 V, R _L =100 k Ω	80	84		
Common Mode Rejection	OMPR	$V_{CM} = -0.1V \sim 4 \text{ V}, V_{S} = 5.5V$	62	70		- dB
	CMRR	V _{CM} = -0.1V~5.6 V, V _S =5.5V	56	68		
Power Supply Rejection	PSRR	$V_{CM} = (-V_S)+0.5 \text{ V}, V_S=2.5V\sim5.5V$	60	80		dB
Input offset voltage drift	ΔVOS/ΔT			2.7		μV/°C
Input voltage swing	.,,	R _L = 100 kΩ		0.008		V
	Vı	R _L =10 kΩ		0.08		V
Operating voltage range	Vw		2.1		5.5	mV
Output Current	lo		20	23		mA
Quiescent Current	ΙQ	IOUT=0		60	80	μA
Slew Rate	SR	G = +1 , 2V Output Step		0.52		V/µs
Gain Bandwidth Product	GBP	CL = 100pF		1		MHz
Equivalent Input Noise Voltage	eN	f=1KHz 27		27		m)// /II
Equivalent input Noise voltage	EIN	f=10KHz		20		$-$ nV/ \sqrt{Hz}




Typical Characteristic Curves

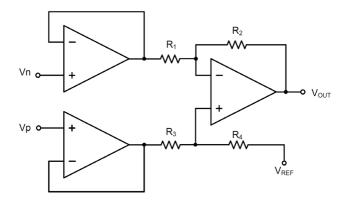


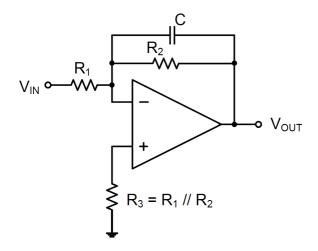




Typical applications

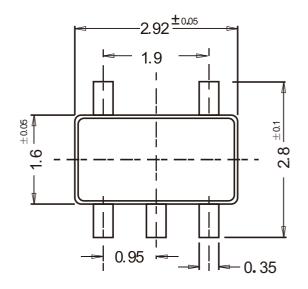
1.differential amplifier

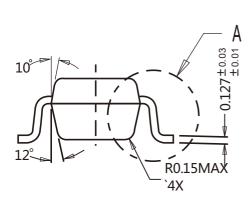

As shown in the figure, if the resistance is equal, (R4 / R3 = R2 / R1), then the output VOUT = $(Vp - Vn) \times R2 / R1 + VREF$

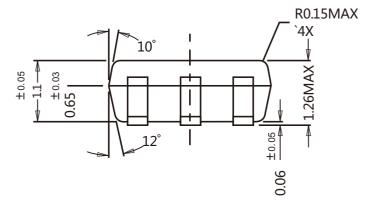

2.instrumentation amplifier

The circuit in the figure above performs the same function, but the input is high impedance.

3.Low pass active filtering


The low-pass filter circuit shown here has a (-R2 / R1) DC gain and -3db at a frequency of 1/2 PI R2C corner. Make sure the filter is within the amplifier's bandwidth. Large feedback resistors are easily accompanied by parasitic capacitance at high speed, resulting in adverse effects such as oscillation. Keep the resistance value as low as possible and consider the appropriate output load.





Package Outline

SOT23-5

Summary of Packing Options

Package	Package Description	Packing Quantity	Industry Standard
SOT23-5	Tape/Reel,7"reel	3000	EIA-481-1