

1. Scope

This specification is applies to Multilayer Ceramic Chip Capacitor(MLCC) for use in electric equipment for the voltage is ranging from 4V to 50V.

The series suitable for general electrics circuit, telecommunications, personal computers and peripheral, power circuit and mobile application. (This product compliant with the RoHS.)

2. Parts Number Code

(1)Product

Product Code	
С	Multilayer Ceramic Chip Capacitor

(2)Chip Size

` ' •		
Code	Length×Width	unit : mm(inch)
0201	0.60× 0.30	(.024× .011)
0402	1.00× 0.50	(.039× .020)
0603	1.60× 0.80	(.063× .031)
0805	2.00× 1.25	(.079× .049)
1206	3.20× 1.60	(.126× .063)
1210	3.20× 2.50	(.126× .098)
1808	4.60× 2.00	(.181× .079)
1812	4.60× 3.20	(.181× .125)
1825	4.60× 6.35	(.181× .250)
2208	5.70× 2.00	(.220× .197)
2211	5.70× 2.80	(.220× .110)
2220	5.70× 5.00	(.220× .197)
2225	5.70× 6.35	(.220× .250)

(3)Temperature Characteristics

Code	Temperature Characteristic	Temperature Range	Temperature Coefficient
N	NPO	-55°C~+125°C	30 ppm/℃
X	X7R	-55℃~+125℃	± 15%
В	X5R	-55°C ~+85°C	± 15%
R	X7S	-55°℃~+125°℃	± 22%
S	X6S	-55°C ~+105°C	± 22%
D	X5S	-55°C ~+85°C	± 22%
Υ	Y5V	-30°C ~+85°C	+22/-82%
Z	Z5U	+10°℃~+85°℃	+22/-56%
Е	Y5U	-30°C ~+85°C	+22/-56%

(4)Capacitance

		C 1	. (. 17
111n1r	'nıco	farad	ยกษ

Code	Nominal Capacitance (pF)
5R0	5.0
120	12.0
681	680.0
222	2,200.0
473	47,000.0
224	220,000.0
105	1,000,000.0
106	10,000,000.0

[%]. If there is a decimal point, it shall be expressed by an English capital letter R

(5) Capacitance Tolerance

Code	Tolerance	Nominal Capacitance
В	± 0.10 pF	Less Than 10 pF
С	± 0.25 pF	(Include 10 pF)
D	± 0.50 pF	_
F	± 1.00 pF	_
F	± 1.00 %	More Than 10 pF
G	± 2.00 %	_
J	± 5.00 %	_
K	± 10.0 %	_
М	± 20.0 %	_
Z	+80/-20 %	_

(6)Rated Voltage

	_
Code	Rated Voltage (Vdc)
004	4
007	6.3
010	10
016	16
025	25
035	35
050	50

(7)Tapping

Code	Type	
Т	Tape & Reel	
В	Bulk	

Page: 1/18

3. Nominal Capacitance and Tolerance

3.1 Standard Combination of Nominal Capacitance and Tolerance

Class	Characteristic	Tolera	ance	Nominal Capacitance
I	NPO	Less Then 10 pF	B (± 0.10 pF)	0.5,1,1.5,2,2.5,3
			C (± 0.25 pF)	0.5,1,1.5,2,2.5,3,3.5,4,4.5,5
			D (± 0.50 pF)	5,6,7,8,9,10
			F (± 1.00 pF)	6,7,8,9,10
		More Than 10 pF	F (±1.00 %)	E-12, E-24 series
			G (±2.00 %)	
			J (± 5.00 %)	
			K (± 10.0 %)	
П	X7R/ X7S/ X5R	K (± 10.0 %),	M (± 20.0 %)	E-3, E-6 series
	X6S/ X5S			
	Y5V	M (± 20.0 %), 2	Z(+80/-20 %)	E- 3 series
	Z5U			
	Y5U			

3.2 E series(standard Number)

Standard No.		Application Capacitance										
E- 3		1.0 2.2						4	.7			
E- 6	1.	.0	1	.5	2	.2	3.	.3	4	.7	6	.8
E-12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
E-24	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
	1.1	1.3	1.6	2.0	2.4	3.0	3.6	4.3	5.1	6.2	7.5	9.1

4. Operation Temperature Range

_	_	_	
Class	Characteristic	Temperature Range	Reference Temp.
I	NPO (N)	-55℃ ~ +125℃	25 ℃
П	X7R (X)	-55°C ~ +125°C	25 ℃
	X7S (R)	-55°C ~ +125°C	25 ℃
	X5R (B)	-55℃ ~ +85℃	25 ℃
	X5S (S)	-55℃ ~ +85℃	25 ℃
	X6S (S)	-30℃ ~ +85℃	25 ℃
	Y5V (Y)	+10℃ ~+85℃	25 ℃
	Z5U (Z)	-30℃ ~ +85℃	25 ℃
	Y5U (E)	-25℃ ~ +85℃	25 ℃
	Other	-25℃ ~ +85℃	25 ℃

5. Storage Condition

Storage Temperature : 5 to 40° C Relative Humidity : 20 to 70 % Storage Time : 6 months max.

Page: 2/18

6. Dimensions

6.1 Configuration and Dimension:

					Unit:mm
TYPE	L	W	Т	B (min)	BW (min)
0805	2.00± 0.20	1.25± 0.20	0.85± 0.10	0.70	0.20

6.2 Termination Type

7. Performance

No.	Item			Specifica	ation	Test Condition		
1	Vis	ual			Visual Inspection			
2	Dime	nsion	See Page 4		Visual Inspection			
3	Insul	ation			hichever is smaller	Applied Voltage:		
	Resis	tance			nd greater 100/C Ω	Charge Time : 60		
			for rate	ed voltage≤10V.			e current shall be	less than 50mA
4	Canaa	itanaa	\\/ithin	The Specified Tol	loranaa	current. Class I		
5	Capac Q	Class	1	Than 30pF : Q≧1		Char	Fraguency	Voltage
5	Q	I		R Below: Q≥400+		C≦100pF	Frequency 1MHz±10%	1.0±0.2Vrms
		1		apacitance , pF)	-200	C ≥ 100pF	1KHz±10%	1.0±0.2 11115
	Tan δ	Class		$\frac{1}{1}$	Table 1 This 2	Class II	11(11Z±10 /6	
	lano	Ulass	Table 3		Table 1,1ble 2,	Char	Frequency	Voltage
		н	Table (C≦10uF	1KHz±10%	1.0±0.2Vrms
						C>10uF	120Hz±20%	0.5±0.2Vrms
							emperature at 150	
						then place room	•	
6	Withst	anding	No die	lectric breakdown	or mechanical	The state of the s	d voltage for 1~5 s	ec.
	Volt	-	breako		or moonamou.		l to less than 50m <i>P</i>	
7	Temperature	e Class I	Char.	Temp. Range	Cap. Change(%)	Class I:		
	Capacitance		NPO	-55℃~+125℃	± 30 ppm/°C		-C1 ×100	0%
	Coefficient	Class	Char.	Temp. Range	Cap. Change(%)		2-T1)	
		П	X7R	-55℃~+125℃	± 15%	`	,	
			X7S	-55℃~+125℃	± 22%	Class II :		
			X6S	-55℃~+105℃	± 22%		<u>-C1</u> ×10	0%
			X5R	-55°C ~+85°C	± 15%		C1	
			X5S	-55°C∼+85°C	± 22%	T1: Standard Ten	nperature(25 $^{\circ}$ C)	
			Y5V	-30°C ~+85°C	+22% ~-82%	T2: Test Tempera	ature	
			Y5U	-30°C ~+85°C	+22% ~-56%	•	At Standard Tempe	
			Z5U	+10°C∼+85°C	+22% ~-56%	•	At Test Temperatu	re (T2)
		<u> </u>			1 11 11	0.2Vrms shall be		" 16 40
8	Adhesive	•			shall occur on the) pull force shall be	applied for 10±
	Of Term	ination	termina	al electrode.		1 second.		
							5	N∙f
							<u> </u>	
	Danistanaa	A	No mo	schonical dama	ge or capacitance	The board shall	be bend 1.0mm w	ith a rate of 1.0
9		Appear-			following table.	mm/sec.	be bend 1.0mm w	illi a rale or 1.0
	Flexure	ance					■ _R230	,
	of Substrate	C-Meter		itance Change				Bending
	2, 00000000		Char.	Cap. Chan		🔻 🚣	<u> </u>	Limit
			NPO(N	-7	of initial value	I I <u>⊢см</u>	leter	
			X7R (>	<i>'</i>		45±1mm	 <> 45±1mm	
			X7S (R) $X6S (S)$ $\leq \pm 12.5\%$ of initial value		of initial value	401111111	7 0±1111111	
			X6S (S	'/	o oi iiiillai value			
			X5R (E	•				
			X5S (E	·	of initial value	-		
			Y5V (Y	/	o oi iiiiiiai vaille			
			Y5U (E	<u> </u>				
			Z5U (Z	<u>(</u>)				

No.	Item		Specification		Test Condition		
10	Solderability		More than 90% of the terminal surface is to be soldered newly, so metal part does not come out or dissolve.		Solder Temperature : 245±5°C Dip Time : 5 ± 0.5sec Immersing Speed : 25±10% mm/s Solder : H63A Flux :Rosin		
11	Resistance	Appear-	No mechanical dama	age shall occur.	Preheat : At 80~120 ℃ for 10~30sec. Class II capacitor shall be set for 48±4 hours at room temperature after one hour heat		
	To Soldering Heat	ance Capacit- ance	Class I (NPO)	Within ± 2.5% or ± 0.25pF whichever is larger of initial value	treatment at 150 +0/-10°C before initial measure. Preheat : at 150± 10°C for 60~120sec.		
			X7R/X7S/X6S X5R/X5S Y5V/Y5U/Z5U	≤ ±7.5% of initial value ≤ ±20% of initial value	Dip : solder temperature of 260± 5°C Dip Time : 10 ± 1sec. Immersing Speed : 25±10% mm/s		
		Q Class I	To satisfy the specifi		Solder : H63A Flux :Rosin		
		Tan δ Class II		in Table 1,Tble 2,Table 3	Measure at room temperature after cooling for Class I: 24 ± 2 Hours Class II: 48 ± 4 Hours		
	-	Insulation Resistance	To satisfy the specifi				
12	Tempera ture	Appear- ance	No mechanical dama		Class II capacitor shall be set for 48 \pm 4 hours at room temperature after one hour heat treatment at 150 +0/-10 $^{\circ}$ C before initial		
	Cycle	Capacit- ance	(NPO)	Within ± 2.5% or ± 0.25pF whichever is larger of initial value	measure. Capacitor shall be subjected to five cycles of		
			X7R/X7S/X6S X5R/X5S	≤ ±7.5% of initial value	the temperature cycle as following:		
		Q	Y5V/Y5U/Z5U To satisfy the specifi	≤ ±20% of initial value ed initial value	Step Temp.(°C) Time(min) 1 Min Rated Temp. +0/-3 30		
		Class I Tan δ	Shall meet the value	in Table 1,Tble 2,Table 3	2 25 3 3 Min Rated Temp. +3/-0 30		
		Class II Insulation Resistance	To satisfy the specifi	ed initial value	Measure at room temperature after cooling for Class I: 24 ± 2 Hours Class II: 48 ± 4 Hours		
13	Humidity	Appear- ance	No mechanical dama	age shall occur.	Class II capacitor shall be set for 48± 4 hours at room temperature after one hour heat		
		Capacit- ance	Characteristic Class I (NPO)	Cap. Change Within ± 5.0% or ± 0.5pF whichever is larger of initial value	treatment at 150 +0/-10 $^{\circ}\mathrm{C}$ before initial measure. Temperature : 40± 2 $^{\circ}\mathrm{C}$		
			X7R/X7S/X6S X5R/X5S Y5V/Y5U/Z5U	≤ ±12.5% of initial value ≤ ±30% of initial value	Relative Humidity : 90 ~ 95%RH Test Time : 500 +12/-0Hr		
		Q Class I	30pF & Over : Q ≥3 10 to 30pF : Q≥275 30pF & Below: Q≥2	350 +2.5C	Measure at room temperature after cooling for Class I: 24 ± 2 Hours Class II: 48 ± 4 Hours		
		Tan δ Class Ⅱ	Shall meet the value Table 3	in Table 1,Tble 2,			
		Insulation Resistance		whichever is smaller for nd greater 10/C Ω for rated (C in Farad)			

Page: 5/18

No.	. Item		Spe	cification	Test Condition
14	Humidity	Appear-	No mechanical dama	ge shall occur.	Class II capacitors applied DC voltage of the
	Load	ance		0 0	rated voltage is applied for one hour at maximum
		Capacit-	Characteristic	Cap. Change	operation temperature ± 3°C then shall be set for
		ance		!	48± 4 hours at room temperature and the initial measurement shall be conducted.
				whichever is larger of	Applied Voltage :Rated Voltage
				initial value ≤ ±12.5% of initial value	Temperature : 40± 2°C
			X7R/X7S/X6S X5R/X5S	= ±12.5 % Of Ithilial Value	Relative Humidity: 90 ~ 95%RH
				≤ ±30% of initial value	Test Time: 500 +12/-0Hr
		Q	30pF & Over : Q ≥3		Current Applied : 50 mA Max.
		Class I	10 to 30pF : Q ≥275+		Carrotte Applica : Co III/ titlax.
		Class I	30pF & Below: Q≥20		Measure at room temperature after cooling for
		Tan δ	•	in Table 1,Tble 2,Table 3	Class I : 24 ± 2 Hours
		Class II	Shall fileet the value	in rable 1,1ble 2,1able 3	Class II: 48 ± 4 Hours
		Insulation	500MO or 25/C O w	hichever is smaller for	
		Resistance		and greater 5/C Ω for rated	
		ricolotarioc	voltage≦10V.	(C in Farad)	
15	High	Appear-	No mechanical dama	ge shall occur.	Class ☐ capacitors applied DC testing voltage is
	Temperat.	ance			applied for one hour at maximum operation
	Load	Capacit-	Characteristic	Cap. Change	temperature ±3℃ then shell be set for 48± 4
	(Life Test)	ance	Class I	Within 5.0% or ±0.5pF	hours at room temperature and the initial
			(NPO)	whichever is larger of	measurement shall be conducted.
			X7R/X7S/X6S	initial value ≤ ±12.5% of initial value	Applied Voltage: 200% Rated Voltage for C < 1.0uF and
			X5R/X5S	= 112.5 % Of Illitial value	150% Rated Voltage for C≥1.0uF.
			Y5V/Y5U/Z5U	≤ ±30% of initial value	However:
		Q	30pF & Over : Q ≥3		The rated voltage is 4V/6.3V/10V,applied
		Class I	10 to 30pF : Q≥275+		voltage of 100% rated voltage.
		Oldoo I	30pF & Below: Q≥20		Temperature: max. operation temperature
		Tan δ		in Table 1,Tble 2,Table 3	Test Time: 1000 +48/-0 Hr
		Class II		, ,	Current Applied : 50mA Max
		Insulation		whichever is smaller for	Measure at room temperature after cooling for
		Resistance		nd greater 10/C Ω for rated	Class I: 24 ± 2 Hours
		_	voltage≤10V.	(C in Farad)	Class II : 48 ± 4 Hours
16	Vibration	Appear-	No mechanical dama	ge shall occur	Solder the capacitor on P.C. board.
		ance			Vibrate the capacitor with amplitude of
		Capacit-	Within the specified to	oierance	1.5mm P-P changing the frequencies
		ance	To a skiet of the	at totate to out on	from 10Hz to 55Hz and back to 10Hz
		Q Class I	To satisfy the specifie	ea initial value	in about 1 min.
		Class I	Oh all man at the enter	in Table 4 This O Table 0	Repeat this for 2 hours each in 3 perpendicular
		Tan δ	Snall meet the value	in Table 1,Tble 2,Table 3	directions.
		Class II			

Note:

10101	
	OUR STANDARD MEASURING INSTRUMENT
MEASURING INSTRUMENT	*C≦10uf
	4278A 1KHZ/1MHZ CAPACITANCE METER (Agilent)
	*C>10uf
	4268A 120HZ/1KHZ CAPACITANCE METER (Agilent)
MEASURING MODE	PARALLEL MODE
RECOMMENDED MEASURING JIG	HP 16334E TEST FIXTURE (Agilent)
STANDARD ENVIRONMENT	Temperature 25°C
	Relate Humidity 50±2%

Page: 6/18

Temp char: X7R,X7S,X6S,X5R,X5S

Table 1

			Ta	anδ (MAX)
	Rated voltage	Capacitance Range	5. Initial 16. Vibration 11. Resistance to solder heat 12. Temperature cycle	13.Humidity 14.Humidity loading 15.High temperature loading
0201	DC 6.3V	C≦0.01uF	5.0%	7.5%
		C=0.1uF	15.0%	25.0%
	DC 10V	C≦0.01uF	5.0%	7.5%
	DC 16V	C≦2.2nF	3.5%	7.5%
		2.2nF <c≦3.3nf< td=""><td>5.0%</td><td>7.5%</td></c≦3.3nf<>	5.0%	7.5%
	DC 25V	C≦2.2nF	2.5%	5.0%
	DC 50V	C≦1nF	2.5%	5.0%
0402	DC 6.3V	C≦0.22uF	10.0%	15.0%
		C≧0.47uF	15.0%	25.0%
	DC 10V	C≦0.1uF	5.0%	7.5%
		0.1uF <c≦1uf< td=""><td>15.0%</td><td>25.0%</td></c≦1uf<>	15.0%	25.0%
	DC 16V	C≦0.22uF	5.0%	7.5%
	DC 25V	C≦0.01uF	3.5%	7.5%
	DC 50V	C≦3.9nF	2.5%	5.0%
0603	DC 4.0V	C≧10uF	12.5%	20.0%
	DC 6.3V	C<1uF	7.5%	12.5%
		1uF≦C<2.2uF	10.0%	15.0%
		2.2uF≦C<4.7uF	10.0%	15.0%
		C≧4.7uF	15.0%	25.0%
	DC 10V	C<1uF	5.0%	7.5%
		1uF≦C<2.2uF	7.5%	12.5%
		C≧2.2uF	10.0%	15.0%
	DC 16V	C≦0.1uF	3.5%	7.5%
		C<1uF	5.0%	7.5%
		C≧1uF	7.5%	12.5%
	DC 25V	C≦0.1uF	3.5%	7.5%
		0.1uF <c≦0.47uf< td=""><td>5.0%</td><td>7.5%</td></c≦0.47uf<>	5.0%	7.5%
		C>0.47uF	7.5%	12.5%
	DC 50V	C<0.1uF	2.5%	5.0%
		C≧0.1uF	3.5%	7.5%
0805	DC 4.0V	C≧10uF	15.0%	25.0%
	DC 6.3V	C≦3.3uF	7.5%	12.5%
		C≧4.7uF	10.0%	15.0%
		C≧10uF	15.0%	25.0%
	DC 10V	C≦2.2uF	5.0%	7.5%
		2.2uF <c≤4.7uf< td=""><td>10.0%</td><td>15.0%</td></c≤4.7uf<>	10.0%	15.0%
	DO 401/	C>4.7uF	15.0%	25.0%
	DC 16V	C≦0.47uF	2.5%	5.0%
		0.47uF < C ≤ 1uF 1uF < C ≤ 4.7uF	5.0% 10.0%	7.5% 15.0%
			15.0%	25.0%
	DC 25V	C>4.7uF C≤0.47uF	3.5%	7.5%
	DO 23V	C≦0.47uF 0.47uF <c≦4.7uf< td=""><td>10.0%</td><td>15.0%</td></c≦4.7uf<>	10.0%	15.0%
	DC 50V	0.47uF < C ≤ 4.7uF C ≤ 0.033uF	2.5%	5.0%
	DO 30 V	0.033uF <c≦0.47uf< td=""><td>3.5%</td><td>7.5%</td></c≦0.47uf<>	3.5%	7.5%
	DC 6.3V	C<10uF	10.0%	15.0%
1206	0.00	C≥10uF	15.0%	25.0%
	DC 10V	C≦10uF	5.0%	7.5%
		C>10uF	10.0%	15.0%
	DC 16V	C<4.7uF	5.0%	7.5%
		C≥4.7uF	10.0%	15.0%
	DC 25V	C≦2.2uF	3.5%	7.5%
	1	2.2uF <c≦4.7uf< td=""><td>5.0%</td><td>7.5%</td></c≦4.7uf<>	5.0%	7.5%
			= - * =	- · ·
		4.7uF <c≦10uf< td=""><td>10.0%</td><td>15.0%</td></c≦10uf<>	10.0%	15.0%
	DC 50V		10.0% 2.5%	15.0% 5.0%

Page: 7/18

				tanδ
Size	Rated voltage	Capacitance Range	5. Initial16. Vibration11. Resistance to solder heat12. Temperature cycle	13.Humidity 14.Humidity loading 15.High temperature loading
1210	DC 6.3V	C≦47uF	10.0%	15.0%
		47uF <c≦100uf< td=""><td>15.0%</td><td>25.0%</td></c≦100uf<>	15.0%	25.0%
	DC 10V	C≦10uF	5.0%	7.5%
		10uF <c≦22uf< td=""><td>10.0%</td><td>15.0%</td></c≦22uf<>	10.0%	15.0%
		22uF <c≦47uf< td=""><td>15.0%</td><td>25.0%</td></c≦47uf<>	15.0%	25.0%
	DC 16V	C≦10uF	5.0%	7.5%
		10uF <c≦47uf< td=""><td>15.0%</td><td>25.0%</td></c≦47uf<>	15.0%	25.0%
	DC 25V	C≦10uF	5.0%	7.5%
		10uF <c≦22uf< td=""><td>15.0%</td><td>25.0%</td></c≦22uf<>	15.0%	25.0%
	DC 35V	C<4.7uF	5.0%	7.5%
		C≧4.7uF	10.0%	15.0%
	DC 50V	C≦1uF	3.5%	7.5%
	DC 6.3V		10.0%	15.0%
1812	DC 10V		10.0%	15.0%
	DC 16V	All Capacitance	5.0%	7.5%
	DC 25V	7 iii Oapaoitarioc	5.0%	7.5%
	DC 35V		2.5%	5.0%
	DC 50V		2.5%	5.0%
2220	DC 35V	All Capacitance	2.5%	5.0%

Table 2

Temp char:Y5V

Size	Rated voltage	Capacitance	tanδ	j
		Range	5.Initial 16.Vibration 11.Resistance to solder heat 12.Temperature cycle	13.Humidity 14.Humidity loading 15.High temperature loading
0201	DC 6.3V	All Capacitance	20.0%	30.0%
0402	DC 6.3V	All Capacitance	20.0%	30.0%
	DC 10V	All Capacitance	12.5%	20.0%
	DC 16V	All Capacitance	9.0%	11.0%
	DC 25V	All Capacitance	5.0%	7.5%
	DC 50V	All Capacitance	5.0%	7.5%
0603	DC 6.3V	All Capacitance	20.0%	30.0%
	DC 10V	C<1uF	7.0%	10.0%
		C≧1uF	16%	25.0%
		C≧2.2uF	20.0%	30.0%
	DC 16V	C<1uF	7.0%	10.5%
		C≧1uF	16%	25.0%
	DC 25V	C≦0.1uF	5.0%	7.5%
		C<1uF	7.0%	10.5%
		C≧1uF	12.5%	20.0%
	DC 50V	C<0.1uF	5.0%	7.5%
		C≧0.1uF	7.0%	10.5%
0805	DC 6.3V	All Capacitance	20.0%	30.0%
	DC 10V	C≦4.7uF	12.5%	20.0%
		C≧10uF	20.0%	30.0%
	DC 16V	C<1uF	7.0%	10.5%
		1uF≦C<4.7uF	10.0%	15.0%
		C≧4.7uF	12.5%	20.0%
	DC 25V	C<1uF	7.0%	10.5%
		C≧1uF	10.0%	15.0%
	DC 50V	C<1uF	5.0%	7.5%
		C≧1uF	10.0%	15.0%

Size	Rated voltage	Capacitance Range	tanō	5
		Hange	5.Initial 16.Vibration 11.Resistance to solder heat 12.Temperature cycle	13.Humidity 14.Humidity loading 15.High temperature loading
1206	DC 10V	C≦1.0uF	12.5%	15.0%
		C≧2.2uF	20.0%	30.0%
	DC 16V	C<1uF	7.0%	10.5%
		1uF≦C<10uF	10.0%	15.0%
		C≧10uF	12.5%	20.0%
	DC 25V	C<1uF	5.0%	7.5%
		1uF≦C<4.7uF	7.0%	10.0%
		C≧4.7uF	10.0%	15.0%
		C≧10uF	12.5%	20.0%
	DC 35V	C≦2.2uF	7.0%	10.5%
	DC 50V	C<1uF	5.0%	7.5%
		C≧1uF	7.0%	10.5%
1210	DC 6.3V	All Capacitance	20.0%	30.0%
1210	DC 10V	All Capacitance	20.0%	30.0%
	DC 16V	All Capacitance	12.5%	20.0%
	DC 25V	C<1uF	7.0%	10.5%
		C≦10uF	10.0%	15.0%
		10uF <c≦22uf< td=""><td>12.5%</td><td>20.0%</td></c≦22uf<>	12.5%	20.0%
	DC 35V	C≦10uF	10.0%	15.0%
	DC 50V	All Capacitance	7.0%	10.0%
1812	DC 6.3V		20.0%	30.0%
.0.2	DC 10V	_	20.0%	30.0%
	DC 16V		12.5%	20.0%
	DC 25V	All Capacitance	10.0%	15.0%
	DC 35V DC 50V	-	10.0%	15.0%
L	DC 201		10.0%	15.0%

Table 3

Temp char:Y5U/Z5U

	Rated	Capacitance	tanč	5
Size	voltage	Range	5.Initial 16.Vibration 11.Resistance to solder heat 12.Temperature cycle	13.Humidity 14.Humidity loading 15.High temperature loading
0603	DC 25V	All Capacitance	4.0%	6.0%
	DC 50V	All Capacitatice	4.0%	6.0%
0805	DC 10V	C≧10uF	20.0%	30.0%
	DC 16V	C≧4.7uF	12.5%	20.0%
	DC 25V		4.0%	6.0%
	DC 35V	All Capacitance	4.0%	6.0%
	DC 50V		4.0%	6.0%
1206	DC 10V	C≧10uF	20.0%	30.0%
	DC 16V	C≧10uF	12.5%	20.0%
	DC 25V	All Consoitance	4.0%	6.0%
	DC 50V	All Capacitance	4.0%	6.0%
1210	DC 25V	All Capacitance	4.0%	6.0%
	DC 50V	All Capacitatice	4.0%	6.0%
1812	DC 25V	All Capacitance	4.0%	6.0%
	DC 50V	7 iii Oapaoitanoc	4.0%	6.0%
2220	DC 25V	All Capacitance	4.0%	6.0%
	DC 50V	7 iii Oupuoiturioo	4.0%	6.0%

Fig.1
P.C. Board for Bending Strength Test

Fig.2
Test Substrate

			•
Туре	A	В	С
0201	0.2	0.9	0.4
0402	0.5	1.5	0.6
0603	1.0	3.0	1.0
0805	1.2	4.0	1.6
1206	2.2	5.0	2.0
1210	2.2	5.0	2.9
1808	3.5	7.0	2.5
1812	3.5	7.0	3.7
2208	4.5	8.0	2.5
2211	4.5	8.0	3.0
2220	4.5	8.0	5.6

Page: 10/18

8. Packing

8.1 Bulk Packing

According to customer request.

8.2 Chip Capacitors Tape Packing

8.3 Material And Quantity

Tape	0201	0402	0603/	0805
Material	T≦0.33mm	T≦0.55mm	T≦0.90mm	T>0.90mm
Paper	15,000 pcs/Reel	10,000 pcs/Reel	4,000 pcs/Reel	NA
Plastic	NA	NA	NA	3,000 pcs/Reel

Tape		1206	1210/	1808	
Material	T≦0.90mm	0.90mm < T ≤ 1.25mm	T>1.25mm	T≦1.25mm	T>1.25mm
Paper	4,000 pcs/Reel	NA	NA	NA	NA
Plastic	NA	3,000 pcs/Reel	2,000 pcs/Reel	3000 pcs/Reel	2000 pcs/Reel

Tape	1812/2211/2220		1825	2208	
Material	T≦2.20mm	T>2.20mm	T≦2.20mm	T>2.20mm	T≦2.20mm
Paper	NA	NA	NA	NA	NA
Plastic	1000 pcs/Reel	700 pcs/Reel	700 pcs/Reel	400 pcs/Reel	1000 pcs/Reel

NA: Not Available

8.4 Cover Tape Reel Off Force

8.4.1 Peel-Off Force

 $5 g \cdot f \leq Peel-Off Force \leq 70 g \cdot f$

8.4.2 Measure Method

Page: 11/18

Unit:mm

TYPE	Α	В	С	D	E
0201	0.37± 0.1	0.67± 0.1	4.00± 0.1	2.00± 0.05	2.00± 0.1
0402	0.61± 0.1	1.20± 0.1			
0603	1.10± 0.2	1.90± 0.2			4.00± 0.1
0805	1.50± 0.2	2.30± 0.2			
1206	1.90± 0.2	3.50± 0.2			
1210	2.90± 0.2	3.60± 0.2			

TYPE	F	G	Н		t
0201	1.75± 0.10	3.50± 0.05	8.0± 0.30	φ 1.50 +0.10/-0	1.10 max.
0402					
0603					
0805					
1206					
1210					

8.6 Plastic Tape

Unit:mm

Туре	А	В	С	D	E	F
0805	1.5±0.2	2.3±0.2	4.0± 0.1	2.0± 0.05	4.0± 0.1	1.75± 0.1
1206	1.9±0.2	3.5±0.2				
1210	2.9±0.2	3.6±0.2				
1808	2.5±0.2	4.9±0.2				
1812	3.6±0.2	4.9±0.2			8.0± 0.1	
1825	6.9±0.2	4.9±0.2				
2208	2.5±0.2	6.1±0.2				
2211	3.2±0.2	6.1±0.2				
2220	5.4±0.2	6.1±0.2				
2225	6.9±0.2	6.1±0.2				

Page: 12/18

Type	G	Н	I	J	t	0
0805	3.5± 0.05	8.0± 0.3	φ 1.5+0.1/-0	3.0 max.	0.3 max.	0.15 min.
1206						
1210						
1808	5.5± 0.05	12.0 ± 0.3		4.0 max.		
1812						
1825						
2208						
2211						
2220						
2225						

8.7 Reel Dimensions

Reel Material : Polystyrene

Unit:mm

Type	Α	В	С	D	E	W
0201	φ 382 max	arphi 50 min	φ 13± 0.5	φ 21± 0.8	2.0±0.5	10± 0.15
0402						
0603						
0805						
1206						
1210						
1808	φ 178±0.2	φ 60±0.2				13±0.3
1812						
1825						
2208						
2211						
2220						
2225						

Precautionary Notes:

1. Storage

Store the capacitors where the temperature and relative humidity don't exceed 40 °C and 70%RH. We recommend that the capacitors be used within 6 months from the date of manufacturing. Store the products in the original package and do not open the outer wrapped, polyethylene bag, till just before usage. If it is open, seal it as soon as possible or keep it in a desiccant with a desiccation agent.

2. Construction of Board Pattern

Improper circuit layout and pad/land size may cause excessive or not enough solder amount on the PC board. Not enough solder may create weak joint, and excessive solder may increase the potential of mechanical or thermal cracks on the ceramic capacitor. Therefore we recommend the land size to be as shown in the following table: 2.1 Size and recommend land dimensions for reflow soldering

EIA Code	Chip	(mm)		L	and (mm)		
EIA Code	L	W	Α	В	С	D	Е
0201	0.60	0.30	0.2~0.3	0.2~0.4	0.2~0.4		1
0402	1.00	0.50	0.3~0.5	0.3~0.5	0.4~0.6		1
0603	1.60	0.80	0.4~0.6	0.6~0.7	0.6~0.8		1
0805	2.00	1.25	0.7~0.9	0.6~0.8	0.8~1.1		1
1206	3.20	1.60	2.2~2.4	0.8~0.9	1.0~1.4	1.0~2.0	3.2~3.7
1210	3.20	2.50	2.2~2.4	1.0~1.2	1.8~2.3	1.0~2.0	4.1~4.6
1808	4.60	2.00	2.8~3.4	1.8~2.0	1.5~1.8	1.0~2.8	3.6~4.1
1812	4.60	3.20	2.8~3.4	1.8~2.0	2.3~3.0	1.0~2.8	4.8~5.3
1825	4.60	6.35	2.8~3.4	1.8~2.0	5.1~5.8	1.0~4.0	7.1~8.3
2208	5.70	2.00	4.0~4.6	2.0~2.2	1.5~1.8	1.0~4.0	3.6~4.1
2211	5.70	2.80	4.0~4.6	2.0~2.2	2.0~2.6	1.0~4.0	4.4~4.9
2220	5.70	5.00	4.0~4.6	2.0~2.2	3.5~4.8	1.0~4.0	6.6~7.1
2225	5.70	6.35	4.0~4.6	2.0~2.2	5.1~5.8	1.0~4.0	7.1~8.3

2.2 Mechanical strength varies according to location of chip capacitors on the P.C. board.
Design layout of components on the PC board such a way to minimize the stress imposed on the components, upon flexure of the boards in depanelization or other processes.

Component layout close to the edge of the board or the "depanelization line" is not recommended. Susceptibility to stress is in the order of: a>b>c and d>e

Page: 14/18

2.3 Layout Recommendation

Example	Use of Common Solder Land	Solder With Chassis	Use of Common Solder Land With Other SMD
Need to Avoid	Chip Solder Adhesive PCB Solder Land	Chassis Excessive Solder a	Solder Land
Recommendation	Chip Solder Resist Adhesive PCB Solder Land	Solder Resist $\alpha > \beta$	

3. Mounting

3.1 Sometimes crack is caused by the impact load due to suction nozzle in pick and place operation. In pick and place operation, if the low dead point is too low, excessive stress is applied to component. This may cause cracks in the ceramic capacitor, therefore it is required to move low dead point of a suction nozzle to the higher level to minimize the board warp age and stress on the components. Nozzle pressure is typically adjusted to 1N to 3N (static load) during the pick and place operation.

3.2 Amount of Adhesive

Example: 0805 & 1206

а	0.2mm min.
b	70 ~ 100 μm
С	Do not touch the solder land

Page: 15/18

4. Soldering

4.1. Wave Soldering

Most of components are wave soldered with solder at 230 to $250\,^{\circ}$ C. Adequate care must be taken to prevent the potential of thermal cracks on the ceramic capacitors. Refer to the soldering methods below for optimum soldering benefits.

Recommend flow soldering temperature Profile

Soldering Method	Change in Temp.($^{\circ}$ C)
1206 and Under	Δ T ≤ 100~130 max.

To optimize the result of soldering, proper preheating is essential:

- 1) Preheat temperature is too low
 - a. Flux flows to easily
 - b. Possibility of thermal cracks
- 2) Preheat temperature is too high
 - a. Flux deteriorates even when oxide film is removed
 - b. Causes warping of circuit board
 - c. Loss of reliability in chip and other components

Cooling Condition:

Natural cooling using air is recommended. If the chips are dipped into a solvent for cleaning, the temperature difference (Δ T) between the solvent and the chips must be less than 100 °C.

4.2 Reflow Soldering

Preheat and gradual increase in temperature to the reflow temperature is recommended to decrease the potential of thermal crack on the components. The recommended heating rate depends on the size of component, however it should not exceed $3\,\text{C/Sec}$.

Recommend reflow profile for Lead-Free soldering temperature Profile (MIL-STD-202G #210F)

The cycles of soldering : Twice (max.)

Soldering Method	Change in Temp.(°C)
1206 and Under	∆T ≦ 190 °C
1210 and Over	∆T ≦ 130 °C

Page: 16/18

4.3 Hand Soldering

Sudden temperature change in components, results in a temperature gradient recommended in the following table, and therefore may cause internal thermal cracks in the components. In general a hand soldering method is not recommended unless proper preheating and handling practices have been taken. Care must also be taken not to touch the ceramic body of the capacitor with the tip of solder Iron.

Soldering Method	Change in Temp.(°C)
1206 and Under	∆ T ≦ 190 °C
1210 and Over	Δ T \leq 130 $^{\circ}$ C

How to Solder Repair by Solder Iron

1) Selection of the soldering iron tip

The required temperature of solder iron for any type of repair depends on the type of the tip, the substrate material, and the solder land size.

- 2) recommended solder iron condition
 - a.) Preheat the substrate to (60°C) to 120°C) on a hot plate. Note that due to the heat loss, the actual setting of the hot plate may have to be higher. (For example 100°C to 150°C)
 - b.) Soldering iron power shall not exceed 30 W.
 - c.) Soldering iron tip diameter shall not exceed 3mm.
 - d.) Temperature of iron tip shall not exceed 350 ℃ to perform the process within 5 seconds. (refer to MIL-STD-202G)
 - f.) Do not touch the ceramic body with the tip of solder iron. Direct contact of the soldering iron tip to ceramic body may cause thermal cracks.
 - g.) After soldering operation, let the products cool down gradually in the room temperature.

5. Handling after chip mounted

5.1 Proper handling is recommended, since excessive bending and twist of the board, depends on the orientation of the chip on the board, may induce mechanical stress and cause internal crack in the capacitor.

Higher potential of crack

Lower potential of crack

5.2 There is a potential of crack if board is warped due to excessive load by check pin

Page: 17/18

- 5.3 Mechanical stress due to warping and torsion.
 - (a) Crack occurrence ratio will be increased by manual separation.
 - (b) Crack occurrence ratio will be increased by tensile force, rather than compressive force.

Capacitor Stress Analysis

6. Handling of Loose Chip Capacitor

6.1 If dropped the chip capacitor may crack.

6.2 In piling and stacking of the P.C. boards after mounting for storage or handling, the corner of the P.C. board may hit the chip capacitor mounted on another board to cause crack.

7. Safekeeping condition and period

For safekeeping of the products, we recommend to keep the storage temperature between +5 to +40 °C and under humidity of 20 to 75% RH. The shelf life of capacitors is 6 months.

Page: 18/18